Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/6/9/10.1063/1.4963921
1.
M. Oehzelt, N. Koch, and G. Heimel, Nat. Com. 5, 4174 (2014).
http://dx.doi.org/10.1038/ncomms5174
2.
P. Ojeda-May and M. E. Garcia, Biophys. J. 99, 595 (2010).
http://dx.doi.org/10.1016/j.bpj.2010.04.040
3.
W. Forst, Chem. Rev. 71, 339 (1971).
http://dx.doi.org/10.1021/cr60272a001
4.
W. Forst and Z. Prášil, J. Chem. Phys. 51, 3006 (1969).
http://dx.doi.org/10.1063/1.1672449
5.
T. Beyer and D. Swinehart, Commun. ACM 16, 379 (1973).
http://dx.doi.org/10.1145/362248.362275
6.
S. E. Stein and B. S. Rabinovitch, J. Chem. Phys. 58, 2438 (1973).
http://dx.doi.org/10.1063/1.1679522
7.
R. B. McClurg, R. C. Flagan, and W. A. Goddard III, J. Chem. Phys. 106, 6675 (1997).
http://dx.doi.org/10.1063/1.473664
8.
H. Wadi and E. Pollak, J. Chem. Phys. 110, 8246 (1999).
http://dx.doi.org/10.1063/1.478737
9.
F. Wang and D. P. Landau, Phys. Rev. Lett. 86, 2050 (2001).
http://dx.doi.org/10.1103/PhysRevLett.86.2050
10.
K. Hansen, J. Chem. Phys. 128, 194103 (2008).
http://dx.doi.org/10.1063/1.2920483
11.
T. L. Nguyen and J. R. Barker, J. Phys. Chem. A 114, 3718 (2010).
http://dx.doi.org/10.1021/jp100132s
12.
E. Kamarchik and A. W. Jasper, J. Phys. Chem. Lett. 4, 2430 (2013).
http://dx.doi.org/10.1021/jz401181q
13.
J. W. Bozzelli, A. Y. Chang, and A. M. Dean, Int. J. Chem. Kinet. 29, 161 (1997).
http://dx.doi.org/10.1002/(SICI)1097-4601(1997)29:3<161::AID-KIN2>3.0.CO;2-S
14.
J. W. Allen, C. F. Goldsmith, and W. H. Green, Phys. Chem. Chem. Phys. 14, 1131 (2012).
http://dx.doi.org/10.1039/C1CP22765C
15.
T. Baer and W. L. Hase, Unimolecular Reaction Dynamics: Theory and Experiments (Oxford University Press, 1996) p. 186.
16.
Y. Georgievskii, J. A. Miller, M. P. Burke, and S. J. Klippenstein, J. Phys. Chem. A 117, 12146 (2013).
http://dx.doi.org/10.1021/jp4060704
17.
R. J. Kee, F. M. Rupley, and J. A. Miller, “Chemkin-II: A fortran chemical kinetics package for the analysis of gas-phase chemical kinetics,” Tech. Rep. SAND89–8009.UC-401 (Sandia National Laboratory, 1989).
18.
F. A. Lindemann, S. Arrhenius, I. Langmuir, N. R. Dhar, J. Perrin, and W. C. M. Lewis, Trans. Faraday Soc. 17, 598 (1922).
http://dx.doi.org/10.1039/TF9221700598
19.
R. G. Gilbert, K. Luther, and J. Troe, Ber. Bunsenges. Phys. Chem. 87, 169 (1982).
http://dx.doi.org/10.1002/bbpc.19830870218
20.
W. H. Green, J. W. Allen, B. A. Buesser, R. W. Ashcraft, G. J. Beran, C. A. Class, C. Gao, C. F. Goldsmith, M. R. Harper, A. Jalan, M. Keceli, G. R. Magoon, D. M. Matheu, S. S. Merchant, J. D. Mo, S. Petway, S. Raman, S. Sharma, J. Song, Y. Suleymanov, K. M. Van Geem, J. Wen, R. H. West, A. Wong, H.-W. Wong, P. E. Yelvington, N. Yee, and J. Yu, “RMG - reaction mechanism generator v4.0.1,” http://rmg.sourceforge.net/(accessed December 18, 2014).
21.
S. Gordon and B. J. McBride, “Computer program for calculating complex chemical equilibria, rocket performance, incident and reflected shocks, and chapman-jouguet detonations,” Tech. Rep. SP-273 (Revision of 1971 publication) (NASA, 1976).
22.
S. Nordholm, Chem. Phys. 129, 371 (1989).
http://dx.doi.org/10.1016/0301-0104(89)85007-4
23.
M. P. Burke, C. F. Goldsmith, Y. Georgievskii, and S. J. Klippenstein, Proc. Combust. Inst. 35, 205 (2015).
http://dx.doi.org/10.1016/j.proci.2014.05.118
24.
C. F. Goldsmith, M. P. Burke, Y. Georgievskii, and S. J. Klippenstein, Proc. Combust. Inst. 35, 283 (2015).
http://dx.doi.org/10.1016/j.proci.2014.05.006
25.
N. J. Labbe, R. Sivaramakrishnan, C. F. Goldsmith, Y. Georgievskii, J. A. Miller, and S. J. Klippenstein, J. Phys. Chem. Lett. 7, 85 (2016).
http://dx.doi.org/10.1021/acs.jpclett.5b02418
26.
N. J. Labbe, R. Sivaramakrishnan, C. F. Goldsmith, Y. Georgievskii, J. A. Miller, and S. J. Klippenstein, Proc. Combust. Inst. 36 (2016).
http://dx.doi.org/10.1016/j.proci.2016.06.038
27.
M. Döntgen and K. Leonhard, J. Phys. Chem. A 120, 1819 (2016).
http://dx.doi.org/10.1021/acs.jpca.6b00887
28.
M. Döntgen, L. C. Kröger, and K. Leonhard, Proc. Combust. Inst. (2016).
http://dx.doi.org/10.1016/j.proci.2016.06.088
29.
H.-G. Yu, J. T. Muckerman, and T. J. Sears, Chem. Phys. Lett. 349, 547 (2001).
http://dx.doi.org/10.1016/S0009-2614(01)01238-6
30.
J. Li, Y. Wang, B. Jiang, J. Ma, R. Dawes, D. Xie, J. M. Bowman, and H. Guo, J. Chem. Phys. 136, 041103 (2012);
http://dx.doi.org/10.1063/1.3680256
J. Li, C. Xie, J. Ma, Y. Wang, R. Dawes, D. Xie, J. M. Bowman, and H. Guo, J. Phys. Chem. A 116, 5057 (2012).
http://dx.doi.org/10.1021/jp302278r
31.
C. Xie, J. Li, D. Xie, and H. Guo, J. Chem. Phys. 137, 024308 (2012).
http://dx.doi.org/10.1063/1.4733334
32.
J. C. Corchado and J. Espinosa-Garcia, J. Phys. Chem. A 117, 11648 (2013).
http://dx.doi.org/10.1021/jp310503d
33.
M. Mladenović, J. Phys. Chem. A 117, 7224 (2013).
http://dx.doi.org/10.1021/jp401151n
34.
J. P. Senosiain, S. J. Klippenstein, and J. A. Miller, Proc. Combust. Inst. 30, 945 (2005).
http://dx.doi.org/10.1016/j.proci.2004.07.009
35.
K. Lucas, Molecular models for fluids (Cambridge University Press, 2007).
36.
G. B. Arfken, H.-J. Weber, and F. E. Harris, Mathematical methods for physicists: A comprehensive guide (Elsevier Inc., 2013).
37.
Y.-Y. Chuang and D. G. Truhlar, J. Chem. Phys. 112, 1221 (2000);
http://dx.doi.org/10.1063/1.480768
Y.-Y. Chuang and D. G. Truhlar, J. Chem. Phys.121, 7036 (2004);
http://dx.doi.org/10.1063/1.1781154
Y.-Y. Chuang and D. G. Truhlar, J. Chem. Phys.124, 179903 (2006).
http://dx.doi.org/10.1063/1.2190219
38.
H. J. W. Müller-Kirsten, Basics of statistical physics (World Scientific Publishing, 2009).
39.
R. H. Hunt, R. A. Leacock, C. W. Peters, and K. T. Hecht, J. Chem. Phys. 42, 1931 (1965).
http://dx.doi.org/10.1063/1.1696228
40.
J. Koput, S. Carter, and N. Handy, J. Phys. Chem. A 102, 6325 (1998).
http://dx.doi.org/10.1021/jp9812583
41.
B. A. Ellingson, V. A. Lynch, S. L. Mielke, and D. G. Truhlar, J. Chem. Phys. 125, 084305 (2006).
http://dx.doi.org/10.1063/1.2219441
42.
Z. C. Kramer and R. T. Skodje, Highlights in Theoretical Chemistry 7, 53 (2014).
http://dx.doi.org/10.1007/978-3-662-47377-1_6
43.
P. Atkins and J. de Paula, Physical Chemistry, 9th ed. (Oxford University Press, 2010) p. 452.
44.
T. M. Apostol, Mathematical analysis (Addison-Wesley, 1974).
http://aip.metastore.ingenta.com/content/aip/journal/adva/6/9/10.1063/1.4963921
Loading
/content/aip/journal/adva/6/9/10.1063/1.4963921
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/6/9/10.1063/1.4963921
2016-09-27
2016-12-09

Abstract

Energy-level densities are key for obtaining various chemical properties. In chemical kinetics, energy-level densities are used to predict thermochemistry and microscopic reaction rates. Here, an analytic energy-level density formulation is derived using inverse Laplace transformation of harmonic oscillator partition functions. Anharmonic contributions to the energy-level density are considered approximately using a literature model for the transition from harmonic to free motions. The present analytic energy-level density formulation for rigid rotor-harmonic oscillator systems is validated against the well-studied system. The approximate hindered rotor energy-level density corrections are validated against the well-studied HO system. The presented analytic energy-level density formulation gives a basis for developing novel numerical simulation schemes for chemical processes.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/6/9/1.4963921.html;jsessionid=PbplN_LX2t7lHMKjJVtDUG1B.x-aip-live-02?itemId=/content/aip/journal/adva/6/9/10.1063/1.4963921&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/6/9/10.1063/1.4963921&pageURL=http://scitation.aip.org/content/aip/journal/adva/6/9/10.1063/1.4963921'
Right1,Right2,Right3,