Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/6/9/10.1063/1.4964147
1.
N. Setter, D. Damjanovic, L. Eng, G. Fox, S. Gevorgian, S. Hong, A. Kingon, H. Kohlstedt, N. Y. Park, G. B. Stephenson, I. Stolitchnov, A. K. Taganstev, D. V. Taylor, T. Yamada, and S. Streiffer, J. Appl. Phys. 100, 051606 (2006).
http://dx.doi.org/10.1063/1.2336999
2.
J. F. Scott, Science 315, 954 (2007).
http://dx.doi.org/10.1126/science.1129564
3.
P. Zubko, D. J. Jung, and J. F. Scott, J. Appl. Phys. 100, 114113 (2006).
http://dx.doi.org/10.1063/1.2382479
4.
G. W. Dietz, M. Schumacher, R. Waser, S. K. Streiffer, C. Basceri, and A. I. Kingon, J. Appl. Phys. 82, 2359 (1997).
http://dx.doi.org/10.1063/1.366045
5.
A. Sigov, Yu. Podgorny, K. Vorotilov, and A. Vishnevskiy, Phase Trans. 86, 1141 (2013).
http://dx.doi.org/10.1080/01411594.2013.790033
6.
I. Stolichnov and A. Tagantsev, J. Appl. Phys. 84, 3216 (1998).
http://dx.doi.org/10.1063/1.368888
7.
Y. V. Podgorny, K. A. Vorotilov, and A. S. Sigov, Phys. Solid State 54, 911 (2012).
http://dx.doi.org/10.1134/s1063783412050332
8.
Y. Podgorny, K. Vorotilov, and A. Sigov, Appl. Phys. Lett. 105, 182904 (2014).
http://dx.doi.org/10.1063/1.4901317
9.
R. Waser and M. Klee, Integr. Ferroelectr. 2, 257 (1992).
http://dx.doi.org/10.1080/10584589208215729
10.
A. K. Jonscher, Dielectric Relaxation in Solids (Chelsea Dielectrics Press Ltd., London, 1983).
11.
X. Chen, A. I. Kingon, L. Mantese, O. Auciello, and K. Y. Hsieh, Integr. Ferroelectr. 3, 355 (1993).
http://dx.doi.org/10.1080/10584589308216691
12.
D. Dimos, W. L. Warren, M. B. Sinclair, B. A. Turtle, and R. W. Schwartz, J. Appl. Phys. 76(7), 4305 (1994).
http://dx.doi.org/10.1063/1.357316
13.
Y. V. Podgorny, D. S. Seregin, A. S. Sigov, and K. A. Vorotilov, Ferroelectr. 439, 56 (2012).
http://dx.doi.org/10.1080/00150193.2012.743373
14.
R. Waser, NATO ASI Series, edited by O. Auciello and R. Waser (Kluwer, Dordrecht, 1995), 284, p. 223.
15.
S.-G. Yoon, A. I. Kingon, and S.-H. Kim, J. Appl. Phys. 88, 6690 (2000).
http://dx.doi.org/10.1063/1.1325382
16.
K. Vorotilov, A. Sigov, D. Seregin, Yu. Podgorny, O. Zhigalina, and D. Khmelenin, Phase Transitions 86, 1152 (2013).
http://dx.doi.org/10.1080/01411594.2013.794276
17.
N. M. Kotova, K. A. Vorotilov, D. S. Seregin, and A. S. Sigov, Inorganic Materials 50, 612 (2014).
http://dx.doi.org/10.1134/S0020168514060107
18.
A. K. Tagantsev and G. Gerra, J. Appl. Phys. 100, 051607 (2006).
http://dx.doi.org/10.1063/1.2337009
19.
J. F. Scott, Integr. Ferroelectr. 9, 1 (1995).
http://dx.doi.org/10.1080/10584589508012900
20.
A. Van der Ziel, Solid State Physical Electronics, 2nd Ed. (Prentice-Hall, New York, 1968), pp. 266274.
21.
P. Zubko, D. J. Jung, and J. F. Scott, J. Appl. Phys. 100, 114112 (2006).
http://dx.doi.org/10.1063/1.2382459
22.
S. B. Desu, and I.K. Yoo, Integr. Ferroelectr. 3, 365 (1993).
http://dx.doi.org/10.1080/10584589308216692
23.
M. Al-Hadidi, J. P. Goss, P. R. Briddon, R. Al-Hamadany, M. Ahmed, and M. J. Rayson, Ferroelectr. 498, 12 (2016).
http://dx.doi.org/10.1080/00150193.2016.1166420
24.
M. Schumacher, G. W. Dietz, and R. Waser, Integr. Ferroelectr. 10, 231 (1995).
http://dx.doi.org/10.1080/10584589508012280
25.
M. Schumacher and R. Waser, Integr. Ferroelectr. 22, 109 (1998).
http://dx.doi.org/10.1080/10584589808208034
26.
A. R. Von Hippel, Dielectrics and Waves (J. Wiley & Sons, New York, 1954).
27.
T. Rojac, S. Drnovsek, A. Bencan, B. Malic, and D. Damjanovic, Phys. Rev. B 93, 014102 (2016).
http://dx.doi.org/10.1103/PhysRevB.93.014102
http://aip.metastore.ingenta.com/content/aip/journal/adva/6/9/10.1063/1.4964147
Loading
/content/aip/journal/adva/6/9/10.1063/1.4964147
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/6/9/10.1063/1.4964147
2016-09-28
2016-12-06

Abstract

Estimation of the steady state (or “true”) leakage current in polycrystalline ferroelectric PZT films with the use of the voltage-step technique is discussed. Curie-von Schweidler (CvS) and sum of exponents models are studied for current-time data fitting. model (sum of three or two exponents) gives better fitting characteristics and provides good accuracy of estimation at reduced measurement time thus making possible to avoid film degradation, whereas CvS model is very sensitive to both start and finish time points and give in many cases incorrect results. The results give rise to suggest an existence of low-frequency relaxation processes in PZT films with characteristic duration of tens and hundreds of seconds.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/6/9/1.4964147.html;jsessionid=uiO0cVpnNy9JYHvm5lKBiaOO.x-aip-live-03?itemId=/content/aip/journal/adva/6/9/10.1063/1.4964147&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/6/9/10.1063/1.4964147&pageURL=http://scitation.aip.org/content/aip/journal/adva/6/9/10.1063/1.4964147'
Right1,Right2,Right3,