Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
S. Maeda, T. Kato, H. Kogure, and N. Hosoya, Appl. Phys. Lett. 106, 171909 (2015).
S. Maeda, T. Kato, Y. Otsuka, N. Hosoya, M. Cianchetti, and C. Laschi, Phys. Rev. E 93, 010501(R) (2016).
N. Hosoya, S. Baba, and S. Maeda, J. Acoust. Soc. Am. 138, EL424 (2015).
J.-Y. Sun, X. Zhao, W. R. K. Illeperuma, O. Chaudhuri, K. H. Oh, D. J. Mooney, J. J. Vlassak, and Z. Suo, Nature 489, 133 (2012).
J. P. Gong, Y. Katuyama, T. Kurokawa, and Y. Osada, Adv. Mater 15, 1155 (2003).
R. Muthupillai, D. J. Lomas, P. J. Rossman, J. F. Greenleaf, A. Manduca, and R. L. Ehman Science 269, 1854 (1995).
K. Schregel, E. W. Tysiak, P. Garteiser, I. Gemeinhardt, T. Prozorovski, O. Aktas, H. Merz, D. Petersen, J. Wuerfel, and R. Sinkus, P. Natl. Acad. Sci. USA 109, 6650 (2012).
A. L. McKnight, J. L. Kugel, P. J. Rossman, A. Manduca, L. C. Hartmann, and R. L. Ehman L., Am. J. Roentgenol 178, 1411 (2002).
I. Sack, J. Bernarding, and J. Braun, Magn. Reson. Imaging 20, 95 (2002).
R. Sinkusa, M. Tanter, T. Xydeas, S. Catheline, J. Bercoff, and M. Fink, Magn. Reson. Imaging 23, 159 (2005).
J. Rump, C. Warmuth, J. Braun, and I. Sack, Magn. Reson. Imaging 26, 228 (2008).
J. Wuerfel, F. Paul, B. Beierbach, U. Hamhaber, D. Klatt, S. Papazoglou, F. Zipp, P. Martus, J. Braun, and I. Sack, Neuroimage 49, 2520 (2010).
Y. K. Mariappan, K. J. Glaser, R. D. Hubmayr, A. Manduca, R. L. Ehman, and K. P. McGee, JMRI-J. Magn. Reson. Im. 33, 1351 (2011).
S. Tadano, K. Fujisaki, H. Suzuki, S. Takao, M. Suga, I. Kajiwara, T. Yamamoto, Y. Jiang, and G. Nakamura, J. Biomech. Sci. Eng. JSME 7, 463 (2012).
D. K. W. Yeung, K. S. Bhatia, Y. Y. P. Lee, A. D. King, P. Garteiser, R. Sinkus, and A. T. Ahuja, Magn. Reson. Imaging 31, 624 (2013).
T. Numano, Y. Kawabata, K. Mizuhara, T. Washio, N. Nitta, and K. Homma, Magn Reson Imaging 31, 939 (2013).
S. K. Chamarthi, B. Raterman, R. Mazumder, A. Michaels, V. M. Oza, J. Hanje, B. Bolster, N. Jin, R. D. White, and A. Kolipaka, Magn. Reson. Imaging 32, 679 (2014).
S. Ichikawa, U. Motosugi, H. Morisaka, K. Sano, T. Ichikawa, A. Tatsumi, N. Enomoto, M. Matsuda, H. Fujii, and H. Onishi, Magn. Reson. Imaging 33, 26 (2015).
S. Ipek-Ugay, T. Drießle, M. Ledwig, J. Guo, S. Hirsch, I. Sack, and J. Braun, J. Magn. Reson. 251, 13 (2015).
H. Hu, X. Wang, H. Zhai, N. Zhang, and P. Wang, Appl. Phys. Lett. 97, 061117 (2010).
W. Qi, R. Li, T. Ma, J. Li, K. K. Shung, Q. Zhou, and Z. Chen, Appl. Phys. Lett. 103, 103704 (2013).
S. V. Francis, M. Sasikala, G. B. Bharathi, and S. D. Jaipurkar, Infrared Phys. Techn. 67, 490 (2014).
Y. Zhou, S. Tao, and B. Wu, Appl. Phys. Lett. 99, 051106 (2011).
X. Zeng, X. Mao, S. S. Mao, S.-B. Wen, R. Greif, and R. E. Russo, Appl. Phys. Lett. 88, 061502 (2006).
S. H. Ko, S. G. Ryu, N. Misra, H. Pan, C. P. Grigoropoulos, N. Kladias, E. Panides, and G. A. Domoto, Appl. Phys. Lett. 91, 051128 (2007).
K. Sasaki, T. Nakano, W. Soliman, and N. Takada, Appl. Phys. Express 2, 046501 (2009).
S. Choi, T.-H. Han, A. B. Gojani, and J. J. Yoh, Appl Phys A 98, 147 (2010).
T. Yabe, C. Phipps, M. Yamaguchi, R. Nakagawa, K. Aoki, H. Mine, Y. Ogata, C. Baasandash, M. Nakagawa, E. Fujiwara, K. Yoshida, A. Nishiguchi, and I. Kajiwara, Appl. Phys. Lett. 80, 4318 (2002).
M. Kamata, M. Obara, R. R. Gattass, L. R. Cerami, and E. Mazur, Appl. Phys. Lett. 87, 051106 (2005).
F. Qian, R. K. Singh, S. K. Dutta, and P. P. Pronko, Appl. Phys. Lett. 67, 3120 (1995).
O. Hatamleh, Mat. Sci. Eng. A-Struct. 492, 168 (2008).
I. Kajiwara and N. Hosoya, J. Sound Vib. 330, 5045 (2011).
N. Hosoya, I. Kajiwara, and T. Hosokawa, J. Sound Vib. 331, 1355 (2012).
F. Huda, I. Kajiwara, N. Hosoya, and S. Kawamura, Mech. Syst. Signal Pr. 40, 589 (2013).
N. Hosoya, M. Nagata, and I. Kajiwara, J. Sound Vib. 332, 4572 (2013).
F. Huda, I. Kajiwara, and N. Hosoya, J. Sound Vib. 333, 3609 (2014).
N. Hosoya, I. Kajiwara, T. Inoue, and K. Umenai, J. Sound Vib. 333, 4254 (2014).
N. Hosoya, I. Kajiwara, and K. Umenai, J. Vib. Control XXX, XXX (2015).
Y. Zhang, T. Hiruta, I. Kajiwara, and N. Hosoya, J. Vib. Control XXX, XXX (2015).
N. Hosoya, R. Umino, I. Kajiwara, S. Maeda, T. Onuma, and A. Mihara, Exp. Mech. 56, 339 (2016).
N. Hosoya, M. Nagata, I. Kajiwara, and R. Umino, Exp. Mech. 56, 1305 (2016).
B. Hartmann and J. Jarzynski, J. Acoust. Soc. Am. 56, 1469 (1974).
L. Mahadevan, S. Daniel, and M. K. Chaudhury, P. Natl. Acad. Sci. USA 101, 23 (2004).
T. Takigawa, Y. Morino, K. Urayama, and T. Masuda, Polym. Gels Netw. 4, 1 (1996).
R. H. Pritchard and E. M. Terentjev, Polymer 54, 6954 (2013).

Data & Media loading...


Article metrics loading...



Gels have received increased attention as potential materials for biological materials because they can exhibit similar mechanical properties. One obstacle for using gels is that their mechanical properties are significantly altered by defects, such as an inhomogeneous crosslink density distribution. If these defects could be detected and the values and spatial distributions of mechanical properties in the gel could be determined, it would be possible to apply gels for several fields. To achieve the high spatial and temporal resolution measurement of mechanical properties in hydrogels, in our method, a conventional contact excitation device is replaced with a non-contact excitation using laser ablation for the input and magnetic resonance elastography to measure stress waves is replaced with the Schlieren method with a high-speed camera. Magnetic resonance elastography is a local measurement technique, and consequently, requires a lot of time to characterize a sample, as well as does not have sufficient spatial resolution to obtain a broad range of elasticity coefficients of gels. We use laser ablation to apply non-contact impulse excitations to gels to generate stress waves inside them. We can determine mechanical properties of gels using the stress waves’ propagation velocity.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd