Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
A. Kar, S. Kundu, and A. Patra, J. Phys. Chem. C. 115, 118 (2011).
K. Vijayarangamuthu and S. Rath, J. Alloys Compd. 610, 706 (2014).
D. Calestani, M. Zha, A. Zappettini, L. Lazzarini, G. Salviati, L. Zanotti, and G. Sberveglieri, Materials Science and Engineering C 25, 625 (2005).
P. Boroojerdian, Int. J. Nanosci. Nanotechnol. 9(No. 2), 95 (2013).
A. Diéguez, A. Romano-Rodríguez, A. Vilà, and J. R. Morante, J. Appl. Phys. 90, 1550 (2001).
E. Fazio, F. Neri, S. Savasta, S. Spadaro, and S. Trusso, Physical Review B 85, 195423 (2012).
H. N. Lim, R. Nurzulaikha, I. Harrison, S. S. Lim, W. T. Tan, M. C. Yeo, M. A. Yarmo, and N. M. Huang, Ceramics International 38, 4209 (2012).
C. Nayral, E. Viala, V. Collière, P. Fau, F. Senocq, A. Maisonnat, and B. Chaudret, Sens. Actuators B 164, 219 (2000).
J. Xu, D. Wang, L. Qin, W. Yu, and Q. Pan, Sens. Actuators B 137, 490 (2009).
Y. Yu, L. Gu, C. Zhu, P. A. van Aken, and J. Maier, J. Am. Chem. Soc. 131, 15984 (2009).
Z. Yang, G. Du, Z. Guo, X. Yu, Z. Chen, P. Zhang, G. Chen, and H. Liu, J. Mater. Res. 25(No. 8), 1516 (2010).
F. Gu, S. F. Wang, M. K. Lu, G. J. Zhou, D. Xu, and D. R. Yuan, J. Phys. Chem. B 108, 8119 (2004).
J. X. Zhou, M. S. Zhang, J. M. Hong, and Z. Yin, Solid State Communications 138, 242 (2006).
J. Kaur, J. Shah, R. K. Kotnala, and K. C. Verma, Ceramics International 38, 5563 (2012).
S. K. Sengar, B. R. Mehta, and Govind, J. Appl. Phys. 112, 014307 (2012).
R. D. Lide, CRC Handbook of Chemistry and Physics, 90th ed. (2009).
P. Howe, M. Wood, and P. Watts, Concise International Chemical Assessment Document 65 (World Health Organization, 2005).
V. Chandrasekhar, S. Nagendran, and V. Baskar, Coordination Chemistry Reviews 235, 1 (2002).
V. G. K. Das, L. K. Mun, C. Wei, and T. C. W. Mak, Organometallics 6, 10 (1987).
A. F. Holleman and E. Wiberg, Inorganic Chemistry (Academic Press, San Diego, 2001).
V. M. Aroutiounian, Lithuanian Journal of Physics 55(No. 4), 319 (2015).
F. Gu, S. F. Wang, M. K. Lu, X. F. Cheng, S. W. Liu, G. J. Zhou, D. Xu, and D. R. Yuan, Journal of Crystal Growth 262, 182 (2004).
N. S. Sabri, M. S. M. Deni, A. Zakaria, and M. K. Talari, Physics Procedia 25, 233 (2012).
S. M. Hosseini, I. A. Sarsari, P. Kameli, and H. Salamati, arXiv:1508.00382 [cond-mat.mtrl-sci] (2005).
R. Ghosh, P. K. Giri, K. Imakita, and M. Fuji, J. Alloys Compds. 638, 419 (2015).
A. M. P. Hussain, S. N. Sarangi, and S. N. Sahu, arXiv:1004.2319 [cond-mat.mtrl-sci] (2010).
K. D. Sattler, Handbook of Nanophysics: Nanoparticles and Quantum Dots (CRC Press, 2011), p.615.
D. Jiang, L. Cao, W. Liu, G. Su, H. Qu, Y. Sun, and B. Dong, Nanoscale Res Lett 4, 78 (2009).

Data & Media loading...


Article metrics loading...



In the present study, we report a controlled growth of tin oxide and tin oxide: carbon nanoparticles by an integrated method comprising of the gas phase agglomeration, electrical mobility based size selection, and in–flight sintering steps. The effect of in-flight sintering temperature and variation in growth environment (N, H and O) during nanoparticle formation, morphology and composition has been investigated by carrying out High Resolution Transmission Electron microscopy and X-Ray diffraction studies. The results highlight the novelty of the present technique to grow alloy and core-shell nanoparticles in which the stoichiometery (x) of SnO and the mode of incorporation of carbon into the tin oxide lattice (alloy or core-shell structure), along with well-defined size can be controlled independently. Detailed Photoluminescence (PL) studies of well sintered monocrystalline SnO, SnO and SnO nanoparticles along with SnO:C and SnO:C alloy and C@SnO core-shell nanoparticle has been carried out. The shift in the position and nature of PL peaks due to band edge, Sn interstitials and oxygen vacancy defect level energy states has been understood as a function of stoichiometery and nanoparticle structure (alloy and core-shell). These results suggest the possibility of tailoring the position of these levels by controlling the size, composition and alloying which is potentially important for gas sensing, photoconductivity and photo-electrochemical applications.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd