Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/6/9/10.1063/1.4964316
1.
K. Takahashi, A. Yoshikawa, and A. Sandu, Wide Bandgap Semiconductors: Fundamental Properties of Modern Photonic and Electronic Devices (Springer, Berlin, 2007).
2.
M. Willander, Zinc Oxide Nanostructures Advances and Applications (CRC Press, Boca Raton, 2013).
3.
N. H. Nickel and E. Terukov, Zinc Oxide - A Material for Micro- and Optoelectronic Applications (Springer, Dordrecht, 2005).
4.
A. Janotti and C. G. Van de Walle, Rep. Prog. Phys. 72, 126501 (2009).
http://dx.doi.org/10.1088/0034-4885/72/12/126501
5.
R. Podila, P. Chen, J. Reppert, A. M. Rao, and P. C. Ke, J. Mat. Res. 26, 2328 (2011).
http://dx.doi.org/10.1557/jmr.2011.147
6.
D. C. Look, Mat. Sci. Eng. B 80, 383 (2001).
http://dx.doi.org/10.1016/S0921-5107(00)00604-8
7.
Ü. Özgür, Y. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Doğan, V. Avrutin, S.-J. Cho, and H. Morkoç, J. Appl. Phys. 98, 041301 (2005).
http://dx.doi.org/10.1063/1.1992666
8.
S. Ilican, Y. Caglar, and M. Caglar, J. Optoelectron. Adv. Mater. 10, 2578 (2008).
9.
R. C. Rai, J. Appl. Phys. 113, 153508 (2013).
http://dx.doi.org/10.1063/1.4801900
10.
Z. L. Wang, J. Phys. Cond. Matt. 16, R829 (2004).
http://dx.doi.org/10.1088/0953-8984/16/25/R01
11.
A. Kolodziejczak-Radzimska and T. Jesionowski, Materials 7, 2833 (2014).
http://dx.doi.org/10.3390/ma7042833
12.
M. Egblewogbe, B. Anand, R. Podila, R. Philip, S. Sai, and A. M. Rao, Mat. Exp. 2, 351 (2012).
http://dx.doi.org/10.1166/mex.2012.1089
13.
L. V. Podrezova, S. Porro, V. Cauda, M. Fontana, and G. Cicero, Appl. Phys. A 113, 623 (2013).
http://dx.doi.org/10.1007/s00339-013-7838-5
14.
M. Zha, D. Calestani, A. Zappettini, R. Mosca, M. Mazzera, L. Lazzarini, and L. Zanotti, Nanotechnology 19, 325603 (2008).
http://dx.doi.org/10.1088/0957-4484/19/32/325603
15.
A. Rosencwaig, Photoacoustics and Photoacoustic Spectroscopy (Wiley, New York, 1980).
16.
N. Kuthirummal, J. Chem. Educ. 86, 1238 (2009).
http://dx.doi.org/10.1021/ed086p1238
17.
D. V. Bageshwar, A. S. Pawar, V. V. Khanvilkar, and V. J. Kadam, Eurasian J. Anal. Chem. 5, 187 (2010).
18.
C. Pacholski, A. Kornowski, and H. Weller, Agnew. Chem. Int. Ed. 41, 1188 (2002).
http://dx.doi.org/10.1002/1521-3773(20020402)41:7<1188::AID-ANIE1188>3.0.CO;2-5
19.
K. X. Yao, R. Sinclair, and H. C. Zeng, J. Phys. Chem. C 111, 2032 (2007).
http://dx.doi.org/10.1021/jp067288k
20.
O. Lupan, T. Pauporté, L. Chow, B. Viana, F. Pellé, L. K. Ono, B. R. Cuenya, and H. Heinrich, Appl. Surf. Sci. 256, 1895 (2010).
http://dx.doi.org/10.1016/j.apsusc.2009.10.032
21.
B. D. Cullity and S. Rstock, Elements of X-Ray Diffraction (Prentice Hall, New Jersey, 2001).
22.
A. Rosencwaig, Rev. Sci. Instr. 48, 1133 (1977).
http://dx.doi.org/10.1063/1.1135213
23.
A. K. Gosh, K. K. Som, S. Chatterjee, and B. K. Chaudhuri, Phys. Rev. B 51, 4842 (1995).
http://dx.doi.org/10.1103/physrevb.51.4842
24.
C. A. Benett, Jr. and R. R. Patty, Appl. Opt. 21, 49 (1982).
http://dx.doi.org/10.1364/ao.21.000049
25.
M. Maliński, L. Bychto, S. Łegowski, J. Szatkowski, and J. Zakrzewski, Microelectronics J. 32, 903 (2001).
http://dx.doi.org/10.1016/s0026-2692(01)00080-5
26.
M. Maliński, L. Chrobak, and L. Bychto, Solid State Commun. 150, 424 (2010).
http://dx.doi.org/10.1016/j.ssc.2009.12.002
27.
M. Grus and A. Sikorska, Physica B 266, 139 (1999).
http://dx.doi.org/10.1016/S0921-4526(98)01290-3
28.
F. Urbach, Phys. Rev. 92, 1324 (1953).
http://dx.doi.org/10.1103/PhysRev.92.1324
29.
T. H. Keil, Phys. Rev. 144, 582 (1966).
http://dx.doi.org/10.1103/PhysRev.144.582
30.
D. Arae, Q. Shen, and T. Toyoda, Analytical Sciences 17S, i1149 (2001).
31.
G. Xiong, U. Pal, J. G. Serrano, K. B. Ucer, and R. T. Williams, Phys. Stat. Sol. C 3, 3577 (2006).
http://dx.doi.org/10.1002/pssc.200672164
32.
K. Rainey, J. Chess, J. Eixeenberger, D. A. Tenne, C. B. Hanna, and A. Punnoose, J. Appl. Phys. 115, 17D727 (2014).
http://dx.doi.org/10.1063/1.4867596
33.
S. Hayashi, N. Nakamori, and H. Kanamori, J. Phys. Soc. Jpn. 46, 176 (1979).
http://dx.doi.org/10.1143/JPSJ.46.176
34.
A. Anžlovar, Z. C. Orel, K. Kogej, and M. Žigon, J. Nanomaterials 2012, 760872.
http://aip.metastore.ingenta.com/content/aip/journal/adva/6/9/10.1063/1.4964316
Loading
/content/aip/journal/adva/6/9/10.1063/1.4964316
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/6/9/10.1063/1.4964316
2016-09-29
2016-12-09

Abstract

Nanostructured zinc oxide samples were synthesized through CVD and annealed in argon. The samples were investigated using SEM, TEM, XRD, and UV/VIS/FTIR photoacoustic spectroscopy. The SEM/TEM images show relatively spherical particles that form elongated, connected domains post-anneal. XRD measurements indicate a typical wurtzite structure and reveal an increase in average grain size from 16.3 nm to 21.2 nm in Ar-annealed samples over pristine samples. Visible photoacoustic spectra reveal the contribution of defect levels on the absorption edge of the fundamental gap of zinc oxide. The steepness parameter of the absorption edge, which is inversely proportional to the width of the absorption edge, decreased from 0.1582 (pristine) to 0.1539 (annealed for 90 minutes) revealing increased density of defect states upon annealing. The FTIR photoacoustic spectra show an intense peak at 412 cm-1 and a shoulder at 504 cm-1 corresponding to the two transverse optical stretching modes of ZnO. These results may indicate a self-assembly mechanism upon anneal under Ar atmosphere leading to early-stage nanorod growth.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/6/9/1.4964316.html;jsessionid=GinpzHHkGB6TPmoIruxRHjT0.x-aip-live-02?itemId=/content/aip/journal/adva/6/9/10.1063/1.4964316&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/6/9/10.1063/1.4964316&pageURL=http://scitation.aip.org/content/aip/journal/adva/6/9/10.1063/1.4964316'
Right1,Right2,Right3,