1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
Temperature dependence of the thermal boundary resistivity of glass-embedded metal nanoparticles
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/100/1/10.1063/1.3673559
1.
1. G. V. Hartland, Chem. Rev. 111, 3858 (2011).
http://dx.doi.org/10.1021/cr1002547
2.
2. V. Juvé, M. Scardamaglia, P. Maioli, A. Crut, S. Merabia, L. Joly, N. Del Fatti, and F. Vallée, Phys. Rev. B 80, 195406 (2009).
http://dx.doi.org/10.1103/PhysRevB.80.195406
3.
3. A. Plech, S. Grésillon, G. von Plessen, K. Scheidt, and G. Naylor, Chem. Phys. 299, 183 (2004).
http://dx.doi.org/10.1016/j.chemphys.2003.10.041
4.
4. L. R. Hirsch, R. J. Stafford, J. A. Bankson, S. R. Sershen, B. Rivera, R. E. Price, J. D. Hazle, N. J. Halas, and J. L. West, Proc. Natl. Acad. Sci. U.S.A. 100, 13549 (2003).
http://dx.doi.org/10.1073/pnas.2232479100
5.
5. P. K. Jain, I. H. El-Sayed, and M. A. El-Sayed, Nanotoday 2, 18 (2007).
6.
6. L. Paasonena, T. Laaksonenb, C. Johansb, M. Yliperttulac, K. Kontturib, and A. Urttic, J. Controlled Release 122, 86 (2007).
http://dx.doi.org/10.1016/j.jconrel.2007.06.009
7.
7. M. Rini, A. Cavalleri, R. W. Schoenlein, R. López, L. C. Feldman, R. F. Haglund, Jr., L. A. Boatner, and T. E. Haynes, Opt. Lett. 30, 558 (2005).
http://dx.doi.org/10.1364/OL.30.000558
8.
8. E. D. Swartz and R. O. Pohl, Rev. Mod. Phys. 61, 605 (1989).
http://dx.doi.org/10.1103/RevModPhys.61.605
9.
9. R. J. Stoner and H. J. Maris, Phys. Rev. B 48, 16373 (1993).
http://dx.doi.org/10.1103/PhysRevB.48.16373
10.
10. G. Cahill, W. K. Ford, K. E. Goodson, G. D. Mahan, A. Majumdar, H. J. Maris, R. Merlin, and S. R. Phillpot, J. Appl. Phys. 93, 793 (2003).
http://dx.doi.org/10.1063/1.1524305
11.
11. M. E. Siemens, Q. Li, R. Yang, K. A. Nelson, E. H. Anderson, M. M. Murnane, and H. C. Kapteyn, Nature Mater. 9, 26 (2010).
http://dx.doi.org/10.1038/nmat2568
12.
12. G. Chen, Phys. Rev. Lett. 86, 2297 (2001).
http://dx.doi.org/10.1103/PhysRevLett.86.2297
13.
13. M. Rashidi-Huyeh, S. Volz, and B. Palpant, Phys. Rev. B 78, 125408 (2008).
http://dx.doi.org/10.1103/PhysRevB.78.125408
14.
14. A. Plech, V. Kotaidis, S. Grésillon, C. Dahmen, and G. von Plessen, Phys. Rev. B 70, 195423 (2004).
http://dx.doi.org/10.1103/PhysRevB.70.195423
15.
15. O. M. Wilson, X. Hu, D. G. Cahill, and P. V. Braun, Phys. Rev. B 66, 224301 (2002).
http://dx.doi.org/10.1103/PhysRevB.66.224301
16.
16. F. Banfi, F. Pressacco, B. Revaz, C. Giannetti, D. Nardi, G. Ferrini, and F. Parmigiani, Phys. Rev. B 81, 155426 (2010).
http://dx.doi.org/10.1103/PhysRevB.81.155426
17.
17. K. Uchida, S. Kaneko, S. Omi, C. Hata, H. Tanji, Y. Asahara, A. J. Ikushima, T. Tokizaki, and A. Nakamura, J. Opt. Soc. Am. B 11, 1236 (1994).
http://dx.doi.org/10.1364/JOSAB.11.001236
18.
18. A. Nelet, A. Crut, A. Arbouet, N. Del Fatti, F. Vallée, H. Portales, L. Saviot, and E. Duval, Appl. Surf. Sci. 229, 226 (2004).
http://dx.doi.org/10.1016/j.apsusc.2004.01.067
19.
19. C. Giannetti, B. Revaz, F. Banfi, M. Montagnese, G. Ferrini, F. Cilento, S. Maccalli, P. Vavassori, G. Oliviero, E. Bontempi et al., Phys. Rev. B 76, 125413 (2007).
http://dx.doi.org/10.1103/PhysRevB.76.125413
20.
20. A. Arbouet, C. Voisin, D. Christofilos, P. Langot, N. Del Fatti, F. Vallée, J. Lermé, G. Celep, E. Cottancin, M. Gaudry et al., Phys. Rev. Lett. 90, 177401 (2003).
http://dx.doi.org/10.1103/PhysRevLett.90.177401
21.
21. H. S. Carslaw and J. C. Jaeger, Conduction of Heat in Solids (Oxford University Press, Oxford, 1959).
22.
22. The value ΔT0 is evaluated solving , the electrons’ contribution to the specific heat being negligible for the explored temperature range.
23.
23. Cm(T) was taken from SciGlass data base, Cp(T) from F. Meads, W. R. Forsythe, and W. F. Giauque, J. Am. Chem. Soc. 63, 1902 (1941).
http://dx.doi.org/10.1021/ja01852a028
http://aip.metastore.ingenta.com/content/aip/journal/apl/100/1/10.1063/1.3673559
Loading
View: Figures

Figures

Image of FIG. 1.

Click to view

FIG. 1.

(Color online) Measured time-resolved relative transmission change for Tcryo  = 200 K. The pump and probe pulses have wavelengths, respectively, at 400 nm and 800 nm. In the cartoon, the thermal fluxes Jp and Jm are represented together with the temperature profile within the sample. Inset: measured OD of the sample outlining the Ag nanoparticles’ LSPR.

Image of FIG. 2.

Click to view

FIG. 2.

(Color online) Time evolution of temperature and specific heat for Tcryo  = 70 K. Panel (a): relative temperature variation (left axis) and absolute temperature (right axis) of the NP (full line) and of the adjacent matrix (dashed line). Inset: experimental transmission change normalized to the value at 6 ps (red curve) and its best fit (black curve). Panel (b): relative specific heat variation (left axis) and absolute specific heat (right axis) of the NP (full line) and of the adjacent matrix (dashed line).

Image of FIG. 3.

Click to view

FIG. 3.

(Color online) Kapitza resistivity ρbd vs Tcryo (black circles). The horizontal arrows indicate the temperatures spanned by the NPs during the thermalization process. Plot of the function , A being a multiplication constant with dimensions ms−1 (red curve). Inset: normalized transmission change (red curve) and its best fit (black curve) for the case Tcryo  = 200 K.

Loading

Article metrics loading...

/content/aip/journal/apl/100/1/10.1063/1.3673559
2012-01-03
2014-04-23

Abstract

The temperature dependence of the thermal boundary resistivity is investigated in glass-embedded Ag particles of radius 4.5 nm, in the temperature range from 300 to 70 K, using all-optical time-resolvednanocalorimetry. The present results provide a benchmark for theories aiming at explaining the thermal boundary resistivity at the interface between metalnanoparticles and their environment, a topic of great relevance when tailoring thermal energy delivery from nanoparticles as for applications in nanomedicine and thermal management at the nanoscale.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/100/1/1.3673559.html;jsessionid=42fi7hucrh2la.x-aip-live-02?itemId=/content/aip/journal/apl/100/1/10.1063/1.3673559&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Temperature dependence of the thermal boundary resistivity of glass-embedded metal nanoparticles
http://aip.metastore.ingenta.com/content/aip/journal/apl/100/1/10.1063/1.3673559
10.1063/1.3673559
SEARCH_EXPAND_ITEM