1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
Temperature dependence of the thermal boundary resistivity of glass-embedded metal nanoparticles
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/100/1/10.1063/1.3673559
1.
1. G. V. Hartland, Chem. Rev. 111, 3858 (2011).
http://dx.doi.org/10.1021/cr1002547
2.
2. V. Juvé, M. Scardamaglia, P. Maioli, A. Crut, S. Merabia, L. Joly, N. Del Fatti, and F. Vallée, Phys. Rev. B 80, 195406 (2009).
http://dx.doi.org/10.1103/PhysRevB.80.195406
3.
3. A. Plech, S. Grésillon, G. von Plessen, K. Scheidt, and G. Naylor, Chem. Phys. 299, 183 (2004).
http://dx.doi.org/10.1016/j.chemphys.2003.10.041
4.
4. L. R. Hirsch, R. J. Stafford, J. A. Bankson, S. R. Sershen, B. Rivera, R. E. Price, J. D. Hazle, N. J. Halas, and J. L. West, Proc. Natl. Acad. Sci. U.S.A. 100, 13549 (2003).
http://dx.doi.org/10.1073/pnas.2232479100
5.
5. P. K. Jain, I. H. El-Sayed, and M. A. El-Sayed, Nanotoday 2, 18 (2007).
6.
6. L. Paasonena, T. Laaksonenb, C. Johansb, M. Yliperttulac, K. Kontturib, and A. Urttic, J. Controlled Release 122, 86 (2007).
http://dx.doi.org/10.1016/j.jconrel.2007.06.009
7.
7. M. Rini, A. Cavalleri, R. W. Schoenlein, R. López, L. C. Feldman, R. F. Haglund, Jr., L. A. Boatner, and T. E. Haynes, Opt. Lett. 30, 558 (2005).
http://dx.doi.org/10.1364/OL.30.000558
8.
8. E. D. Swartz and R. O. Pohl, Rev. Mod. Phys. 61, 605 (1989).
http://dx.doi.org/10.1103/RevModPhys.61.605
9.
9. R. J. Stoner and H. J. Maris, Phys. Rev. B 48, 16373 (1993).
http://dx.doi.org/10.1103/PhysRevB.48.16373
10.
10. G. Cahill, W. K. Ford, K. E. Goodson, G. D. Mahan, A. Majumdar, H. J. Maris, R. Merlin, and S. R. Phillpot, J. Appl. Phys. 93, 793 (2003).
http://dx.doi.org/10.1063/1.1524305
11.
11. M. E. Siemens, Q. Li, R. Yang, K. A. Nelson, E. H. Anderson, M. M. Murnane, and H. C. Kapteyn, Nature Mater. 9, 26 (2010).
http://dx.doi.org/10.1038/nmat2568
12.
12. G. Chen, Phys. Rev. Lett. 86, 2297 (2001).
http://dx.doi.org/10.1103/PhysRevLett.86.2297
13.
13. M. Rashidi-Huyeh, S. Volz, and B. Palpant, Phys. Rev. B 78, 125408 (2008).
http://dx.doi.org/10.1103/PhysRevB.78.125408
14.
14. A. Plech, V. Kotaidis, S. Grésillon, C. Dahmen, and G. von Plessen, Phys. Rev. B 70, 195423 (2004).
http://dx.doi.org/10.1103/PhysRevB.70.195423
15.
15. O. M. Wilson, X. Hu, D. G. Cahill, and P. V. Braun, Phys. Rev. B 66, 224301 (2002).
http://dx.doi.org/10.1103/PhysRevB.66.224301
16.
16. F. Banfi, F. Pressacco, B. Revaz, C. Giannetti, D. Nardi, G. Ferrini, and F. Parmigiani, Phys. Rev. B 81, 155426 (2010).
http://dx.doi.org/10.1103/PhysRevB.81.155426
17.
17. K. Uchida, S. Kaneko, S. Omi, C. Hata, H. Tanji, Y. Asahara, A. J. Ikushima, T. Tokizaki, and A. Nakamura, J. Opt. Soc. Am. B 11, 1236 (1994).
http://dx.doi.org/10.1364/JOSAB.11.001236
18.
18. A. Nelet, A. Crut, A. Arbouet, N. Del Fatti, F. Vallée, H. Portales, L. Saviot, and E. Duval, Appl. Surf. Sci. 229, 226 (2004).
http://dx.doi.org/10.1016/j.apsusc.2004.01.067
19.
19. C. Giannetti, B. Revaz, F. Banfi, M. Montagnese, G. Ferrini, F. Cilento, S. Maccalli, P. Vavassori, G. Oliviero, E. Bontempi et al., Phys. Rev. B 76, 125413 (2007).
http://dx.doi.org/10.1103/PhysRevB.76.125413
20.
20. A. Arbouet, C. Voisin, D. Christofilos, P. Langot, N. Del Fatti, F. Vallée, J. Lermé, G. Celep, E. Cottancin, M. Gaudry et al., Phys. Rev. Lett. 90, 177401 (2003).
http://dx.doi.org/10.1103/PhysRevLett.90.177401
21.
21. H. S. Carslaw and J. C. Jaeger, Conduction of Heat in Solids (Oxford University Press, Oxford, 1959).
22.
22. The value ΔT0 is evaluated solving , the electrons’ contribution to the specific heat being negligible for the explored temperature range.
23.
23. Cm(T) was taken from SciGlass data base, Cp(T) from F. Meads, W. R. Forsythe, and W. F. Giauque, J. Am. Chem. Soc. 63, 1902 (1941).
http://dx.doi.org/10.1021/ja01852a028
http://aip.metastore.ingenta.com/content/aip/journal/apl/100/1/10.1063/1.3673559
Loading
/content/aip/journal/apl/100/1/10.1063/1.3673559
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apl/100/1/10.1063/1.3673559
2012-01-03
2014-09-17

Abstract

The temperature dependence of the thermal boundary resistivity is investigated in glass-embedded Ag particles of radius 4.5 nm, in the temperature range from 300 to 70 K, using all-optical time-resolvednanocalorimetry. The present results provide a benchmark for theories aiming at explaining the thermal boundary resistivity at the interface between metalnanoparticles and their environment, a topic of great relevance when tailoring thermal energy delivery from nanoparticles as for applications in nanomedicine and thermal management at the nanoscale.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/100/1/1.3673559.html;jsessionid=6hqpgnkpkbc59.x-aip-live-03?itemId=/content/aip/journal/apl/100/1/10.1063/1.3673559&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Temperature dependence of the thermal boundary resistivity of glass-embedded metal nanoparticles
http://aip.metastore.ingenta.com/content/aip/journal/apl/100/1/10.1063/1.3673559
10.1063/1.3673559
SEARCH_EXPAND_ITEM