1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Changing inter-molecular spin-orbital coupling for generating magnetic field effects in phosphorescent organic semiconductors
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/100/1/10.1063/1.3673561
1.
1. J. Kalinowski, M. Cocchi, D. Virgili, P. Di Marco, and V. Fattori, Chem. Phys. Lett. 380, 710 (2003).
http://dx.doi.org/10.1016/j.cplett.2003.09.086
2.
2. T. L. Francis, O. Mermer, G. Veeraraghavan, and M. Wohlgenannt, New J. Phys. 6, 185 (2004).
http://dx.doi.org/10.1088/1367-2630/6/1/185
3.
3. G. Salis, S. F. Alvarado, M. Tschudy, T. Brunschwiler, and R. Allenspach, Phys. Rev. B 70, 085203 (2004).
http://dx.doi.org/10.1103/PhysRevB.70.085203
4.
4. V. N. Prigodin, J. D. Bergeson, D. M. Lincoln, and A. J. Epstein, Synth. Met. 156, 757 (2006).
http://dx.doi.org/10.1016/j.synthmet.2006.04.010
5.
5. Y. Wu, Z. Xu, B. Hu, and J. Howe, Phys. Rev. B 75, 035214 (2007).
http://dx.doi.org/10.1103/PhysRevB.75.035214
6.
6. T. D. Nguyen, Y. Sheng, J. Rybicki, G. Veeraraghavan, and M. Wohlgenannt, J. Mater. Chem. 17, 1995 (2007).
http://dx.doi.org/10.1039/b617541d
7.
7. P. A. Bobbert, T. D. Nguyen, F. W. A. van Oost, B. Koopmans, and M. Wohlgenannt, Phys. Rev. Lett. 99, 216801 (2007).
http://dx.doi.org/10.1103/PhysRevLett.99.216801
8.
8. P. Desai, P. Shakya, T. Kreouzis, and W. P. Gillin, Phys. Rev. B 76, 235202 (2007).
http://dx.doi.org/10.1103/PhysRevB.76.235202
9.
9. W. Wagemans, F. L. Bloom, P. A. Bobbert, M. Wohlgenannt, and B. Koopmans, J. Appl. Phys. 103, 07F303 (2008).
http://dx.doi.org/10.1063/1.2828706
10.
10. N. J. Rolfe, M. Heeney, P. B. Wyatt, A. J. Drew, T. Kreouzis, and W. P. Gillin, Phys. Rev. B 80, 241201 (2009).
http://dx.doi.org/10.1103/PhysRevB.80.241201
11.
11. W. P. Gillin, S. Zhang, N. J. Rolfe, P. Desai, P. Shakya, A. J. Drew, and T. Kreouzis, Phys. Rev. B 82, 195208 (2010).
http://dx.doi.org/10.1103/PhysRevB.82.195208
12.
12. T. D. Nguyen, G. Hukic-Markosian, F. J. Wang, L. Wojcik, X. G. Li, E. Ehrenfreund, and Z. V. Vardeny, Nature Mater. 9, 345 (2010).
http://dx.doi.org/10.1038/nmat2633
13.
13. B. Hu and Y. Wu, Nature Mater. 6, 985 (2007).
http://dx.doi.org/10.1038/nmat2034
14.
14. J. D. Bergeson, V. N. Prigodin, D. M. Lincoln, and A. J. Epstein, Phys. Rev. Lett. 100, 067201 (2008).
http://dx.doi.org/10.1103/PhysRevLett.100.067201
15.
15. B. Hu, L. Yan, and M. Shao, Adv. Mater. 21, 1500 (2009).
http://dx.doi.org/10.1002/adma.200802386
16.
16. C. Garditz, A. G. Muckl, and M. Colle, J. Appl. Phys. 98, 104507 (2005).
http://dx.doi.org/10.1063/1.2132512
17.
17. A. Yusoff, W. J. da Silva, J. P. M. Serbena, M. S. Meruvia, and I. A. Hummelgen, Appl. Phys. Lett. 94, 253305 (2009).
http://dx.doi.org/10.1063/1.3159825
18.
18. J. Y. Song, N. Stingelin, A. J. Drew, T. Kreouzis, and W. P. Gillin, Phys. Rev. B 82, 085205 (2010).
http://dx.doi.org/10.1103/PhysRevB.82.085205
19.
19. F. Li, L. Xin, S. Liu, and B. Hu, Appl. Phys. Lett. 97, 073301 (2010).
http://dx.doi.org/10.1063/1.3478014
20.
20. J. Kalinowski, J. Szmytkowski, and W. Stampor, Chem. Phys. Lett. 378, 380 (2003).
http://dx.doi.org/10.1016/j.cplett.2003.07.010
21.
21. E. L. Frankevich, A. A. Lymarev, I. Sokolik, F. E. Karasz, S. Blumstengel, R. H. Baughman, and H. H. Horhold, Phys. Rev. B 46, 9320 (1992).
http://dx.doi.org/10.1103/PhysRevB.46.9320
22.
22. M. Wohlgenannt and Z. V. Vardeny, J. Phys. Condens. Matter 15, R83 (2003).
http://dx.doi.org/10.1088/0953-8984/15/3/202
23.
23. C. Doubleday, N. J. Turro, and J. F. Wang, Acc. Chem. Res. 22, 199 (1989).
http://dx.doi.org/10.1021/ar00162a001
24.
24. V. Ern and R. E. Merrifield, Phys. Rev. Lett. 21, 609 (1968).
http://dx.doi.org/10.1103/PhysRevLett.21.609
25.
25. J. Levinson, S. Z. Weisz, A. Cobas, and A. Rolon, J. Chem. Phys. 52, 2794 (1970).
http://dx.doi.org/10.1063/1.1673392
26.
26. W. Helfrich, Phys. Rev. Lett. 16, 401 (1966).
http://dx.doi.org/10.1103/PhysRevLett.16.401
27.
27. M. Wittmer and I. Zschokke-Granacher, J. Chem. Phys. 63, 4187 (1975).
http://dx.doi.org/10.1063/1.431177
28.
28. H. Tajima, M. Miyakawa, H. Isozaki, M. Yasui, N. Suzuki, and M. Matsuda, Synth. Met. 160, 256 (2010).
http://dx.doi.org/10.1016/j.synthmet.2009.07.024
29.
29. U. E. Steiner and T. Ulrich, Chem. Phys. 89, 51 (1999).
30.
30. J. B. Birks, Organic Molecular Photophysics (Wiley, London, 1975).
31.
31. M. A. Baldo, M. E. Thompson, and S. R. Forrest, Nature 403, 750 (2000).
http://dx.doi.org/10.1038/35001541
32.
32. Z. G. Yu, Phys. Rev. Lett. 106, 106602 (2011).
http://dx.doi.org/10.1103/PhysRevLett.106.106602
33.
33. J. Brandrup, E. H. Immergut, E. A. Grulke, A. Abe, and D. R. Bloch, Polymer Handbook (Wiley, New York, 1974).
34.
34. L. Onsager, J. Chem. Phys. 2, 599 (1934).
http://dx.doi.org/10.1063/1.1749541
35.
35. L. Hu, Y. Noda, H. Ito, H. Kishida, A. Nakamura, and K. Awaga, Appl. Phys. Lett. 96, 243303 (2010).
http://dx.doi.org/10.1063/1.3454915
36.
36. M. A. Baldo, M. E. Thompson, and S. R. Forrest, Pure Appl. Chem. 71, 2095 (1999).
http://dx.doi.org/10.1351/pac199971112095
37.
37. Y. Kawamura, K. Goushi, J. Brooks, J. J. Brown, H. Sasabe, and C. Adachi, Appl. Phys. Lett. 86, 071104 (2005).
http://dx.doi.org/10.1063/1.1862777
38.
38. W. Zheng and G. F. Strouse, J. Am. Chem. Soc. 133, 7482 (2011).
http://dx.doi.org/10.1021/ja200508e
39.
journal-id:
http://aip.metastore.ingenta.com/content/aip/journal/apl/100/1/10.1063/1.3673561
Loading
/content/aip/journal/apl/100/1/10.1063/1.3673561
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apl/100/1/10.1063/1.3673561
2012-01-03
2014-07-25

Abstract

Phosphorescent organic semiconductors normally show negligible magnetic field effects in electronic and optic responses. These phenomena have been generally attributed to strong spin-orbital coupling which can dominate internal spin-dephasing process as compared with applied magnetic field. This paper reports both positive and negative magnetocurrents from phosphorescent organic semiconductors through dissociation and charge-reaction channels when the intermolecular spin-orbital coupling is changed based on materials mixing. Our experimental results indicate that inter-molecular spin-orbital coupling is essentially responsible for the generation of magnetic field effects in phosphorescent organic semiconductors.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/100/1/1.3673561.html;jsessionid=5s5i4t3jhokhb.x-aip-live-06?itemId=/content/aip/journal/apl/100/1/10.1063/1.3673561&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Changing inter-molecular spin-orbital coupling for generating magnetic field effects in phosphorescent organic semiconductors
http://aip.metastore.ingenta.com/content/aip/journal/apl/100/1/10.1063/1.3673561
10.1063/1.3673561
SEARCH_EXPAND_ITEM