1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Nanostructured barbed wire architecturing of organic conducting material blends by electrospinning
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/100/1/10.1063/1.3673620
1.
1. N. L. Lala, R. Ramaseshan, L. Bojun, S. Sundarrajan, R. S. Barhate, L. Ying‐jun, and S. Ramakrishna, Biotechnol. Bioeng. 97, 1357 (2007).
http://dx.doi.org/10.1002/bit.v97:6
2.
2. E.-R. Kenawy, F. I. Abdel-Hay, M. H. El-Newehy, and G. E. Wnek, Mater. Chem. Phys. 113, 296 (2009).
http://dx.doi.org/10.1016/j.matchemphys.2008.07.081
3.
3. Y. K. Luu, K. Kim, B. S. Hsiao, B. Chu, and M. Hadjiargyrou, J. Controlled Release 89, 341 (2003).
http://dx.doi.org/10.1016/S0168-3659(03)00097-X
4.
4. J. Hu and P. X. Ma, Pharm. Res. 28, 1273 (2011).
http://dx.doi.org/10.1007/s11095-011-0367-z
5.
5. M. C. McManus, E. D. Boland, D. G. Simpson, C. P. Barnes, and G. L. Bowlin, J. Biomed. Mater. Res. Part A 81, 299 (2007).
http://dx.doi.org/10.1002/jbm.a.v81a:2
6.
6. H. Yoshimoto, Y. M. Shin, H. Terai, and J. P. Vacanti, Biomaterials 24, 2077 (2003).
http://dx.doi.org/10.1016/S0142-9612(02)00635-X
7.
7. X. Wang, C. Drew, S.-H. Lee, K. J. Senecal, J. Kumar, and L. A. Samuelson, Nano Lett. 2, 1273 (2002).
http://dx.doi.org/10.1021/nl020216u
8.
8. H. Liu, J. Kameoka, D. A. Czaplewski, and H. G. Craighead, Nano Lett. 4, 671 (2004).
http://dx.doi.org/10.1021/nl049826f
9.
9. X. Wang, Y.-G. Kim, C. Drew, B.-C. Ku, J. Kumar, and L. A. Samuelson, Nano Lett. 4, 331 (2004).
http://dx.doi.org/10.1021/nl034885z
10.
10. D. Aussawasathien, S. Sahasithiwat, and L. Menbangpung, Synth. Met. 158, 259 (2008).
http://dx.doi.org/10.1016/j.synthmet.2008.01.007
11.
11. J.-K. Choi, I.-S. Hwang, S.-J. Kim, J.-S. Park, S.-S. Park, U. Jeong, Y. C. Kang, and J.-H. Lee, Sens. Actuators B 150, 191 (2010).
http://dx.doi.org/10.1016/j.snb.2010.07.013
12.
12. E. Zampetti, S. Pantalei, S. Scalese, A. Bearzotti, F. De Cesare, C. Spinella, and A. Macagnano, Biosens. Bioelectron. 26, 2460 (2011).
http://dx.doi.org/10.1016/j.bios.2010.10.032
13.
13. S. W. Choi, S. M. Jo, W. S. Lee, and Y.‐R. Kim, Adv. Mater. 15, 2027 (2003).
http://dx.doi.org/10.1002/adma.v15:23
14.
14. M. Y. Song, D. K. Kim, K. J. Ihn, S. M. Jo, and D. Y. Kim, Nanotechnology 15, 1861 (2004).
http://dx.doi.org/10.1088/0957-4484/15/12/030
15.
15. A. Frenot and I. S. Chronakis, Curr. Opin. Colloid Interface Sci. 8, 64 (2003).
http://dx.doi.org/10.1016/S1359-0294(03)00004-9
16.
16. J. M. Deitzel, J. Kleinmeyer, D. Harris, and N. C. Beck Tan, Polymer 42, 261 (2001).
http://dx.doi.org/10.1016/S0032-3861(00)00250-0
17.
17. S. A. Theron, E. Zussman, and A. L. Yarin, Polymer 45, 2017 (2004).
http://dx.doi.org/10.1016/j.polymer.2004.01.024
18.
18. W. E. Teo and S. Ramakrishna, Nanotechnology 17, R89 (2006).
http://dx.doi.org/10.1088/0957-4484/17/14/R01
19.
19. F. Ko, Y. Gogotsi, A. Ali, N. Naguib, H. Ye, G. L. Yang, C. Li, and P. Willis, Adv. Mater. 15, 1161 (2003).
http://dx.doi.org/10.1002/adma.200304955
20.
20. Y. Dror, W. Salalha, R. L. Khalfin, Y. Cohen, A. L. Yarin, and E. Zussman, Langmuir 19, 7012 (2003).
http://dx.doi.org/10.1021/la034234i
21.
21. B. Ding, E. Kimura, T. Sato, S. Fujita, and S. Shiratori, Polymer 45, 1895 (2004).
http://dx.doi.org/10.1016/j.polymer.2004.01.026
22.
22. Z. Sun, E. Zussman, A. L. Yarin, J. H. Wendorff, and A. Greiner, Adv. Mater. 15, 1929 (2003).
http://dx.doi.org/10.1002/adma.v15:22
23.
23. I. D. Norris, M. M. Shaker, F. K. Ko, and A. G. MacDiarmid, Synth. Met. 114, 109 (2000).
http://dx.doi.org/10.1016/S0379-6779(00)00217-4
24.
24. K. Ranjith, S. K. Swathi, P. Kumar, and P. C. Ramamurthy, J. Mater. Sci. 46, 2259 (2010).
http://dx.doi.org/10.1007/s10853-010-5065-4
25.
25. A. Holzmeister, A. Greiner, and J. H. Wendorff, Polym. Eng. Sci. 49, 148 (2009).
http://dx.doi.org/10.1002/pen.21233
26.
26. S. K. Swathi, K. Ranjith, P. Kumar, and P. C. Ramamurthy, Sol. Energy Mater. Sol. Cells 96, 101 (2012).
27.
27.See supplementary material at http://dx.doi.org/10.1063/1.3673620 for histogram showing fiber diameter distribution; XRD analysis of neat PEO powder, electrospun PEO, and electrospun PEO+DASD blend; and DSC thermogram of neat PEO powder, electrospun PEO, and electrospun PEO+DAD blend. [Supplementary Material]
28.
journal-id:
http://aip.metastore.ingenta.com/content/aip/journal/apl/100/1/10.1063/1.3673620
Loading
/content/aip/journal/apl/100/1/10.1063/1.3673620
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apl/100/1/10.1063/1.3673620
2012-01-03
2014-08-02

Abstract

In this study, fibers of barbed wire structure were obtained by electrospinning blend of organic conducting crystalline material and polyethylene oxide. Thermal and structural characterization of the blend fibers has been carried out to study the fiber characteristics. An increase in crystallinity in the electrospun fibers was observed and was attributed to both electrospinning process as well as addition of organic conducting crystalline material. A mechanism for the formation of this barbed wire structure has also been proposed.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/100/1/1.3673620.html;jsessionid=2lrownqmgv6hw.x-aip-live-03?itemId=/content/aip/journal/apl/100/1/10.1063/1.3673620&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Nanostructured barbed wire architecturing of organic conducting material blends by electrospinning
http://aip.metastore.ingenta.com/content/aip/journal/apl/100/1/10.1063/1.3673620
10.1063/1.3673620
SEARCH_EXPAND_ITEM