1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Mode discretization in an organic microcavity including a perforated silver layer
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/100/10/10.1063/1.3690053
1.
1. J. M. Gérard, Appl. Phys. Lett. 69, 449 (1996).
http://dx.doi.org/10.1063/1.118135
2.
2. J. Reithmaier, M. Röhner, H. Zull, F. Schäfer, A. Forchel, P. Knipp, and T. Reinecke, Phys. Rev. Lett. 78, 378 (1997).
http://dx.doi.org/10.1103/PhysRevLett.78.378
3.
3. M. Obert, B. Wild, G. Bacher, A. Forchel, R. André, and L. S. Dang, Appl. Phys. Lett. 80, 1322 (2002).
http://dx.doi.org/10.1063/1.1452792
4.
4. B. Gayral, J. M. Gérard, B. Legrand, E. Costard, and V. Thierry-Mieg, Appl. Phys. Lett. 72, 1421 (1998).
http://dx.doi.org/10.1063/1.120582
5.
5. D. Sanvitto, A. Daraei, A. Tahraoui, M. Hopkinson, P. W. Fry, D. M. Whittaker, and M. S. Skolnick, Appl. Phys. Lett. 86, 191109 (2005).
http://dx.doi.org/10.1063/1.1925774
6.
6. B. Ohnesorge, M. Bayer, A. Forchel, J. Reithmaier, N. Gippius, and S. Tikhodeev, Phys. Rev. B 56, R4367 (1997).
http://dx.doi.org/10.1103/PhysRevB.56.R4367
7.
7. J. Gérard, B. Sermage, B. Gayral, B. Legrand, E. Costard, and V. Thierry-Mieg, Phys. Rev. Lett. 81, 1110 (1998).
http://dx.doi.org/10.1103/PhysRevLett.81.1110
8.
8. D. L. Huffaker, D. G. Deppe, and T. J. Rogers, Appl. Phys. Lett. 65, 1611 (1994).
http://dx.doi.org/10.1063/1.112927
9.
9. M. Langner, R. Gehlhaar, C. Schriever, H. Fröb, V. G. Lyssenko, and K. Leo, Appl. Phys. Lett. 91, 181119 (2007).
http://dx.doi.org/10.1063/1.2804565
10.
10. O. El Daïf, G. Nardin, T. K. Paraïso, A. Baas, M. Richard, J.-P. Brantut, T. Guillet, F. Morier-Genoud, and B. Deveaud-Plédran, Appl. Phys. Lett. 92, 081910 (2008).
http://dx.doi.org/10.1063/1.2885018
11.
11. D. Lu, J. Ahn, S. Freisem, D. Gazula, and D. G. Deppe, Appl. Phys. Lett. 87, 163105 (2005).
http://dx.doi.org/10.1063/1.2099525
12.
12. B. Min, E. Ostby, V. Sorger, E. Ulin-Avila, L. Yang, X. Zhang, and K. Vahala, Nature 457, 455 (2009).
http://dx.doi.org/10.1038/nature07627
13.
13. S. Reitzenstein, T. Heindel, C. Kistner, A. Rahimi-Iman, C. Schneider, S. Höfling, and A. Forchel, Appl. Phys. Lett. 93, 061104 (2008).
http://dx.doi.org/10.1063/1.2969397
14.
14. T. Heindel, C. Schneider, M. Lermer, S. H. Kwon, T. Braun, S. Reitzenstein, S. Höfling, M. Kamp, and A. Forchel, Appl. Phys. Lett. 96, 011107 (2010).
http://dx.doi.org/10.1063/1.3284514
15.
15. D. Bajoni, E. Semenova, A. Lemaître, S. Bouchoule, E. Wertz, P. Senellart, S. Barbay, R. Kuszelewicz, and J. Bloch, Phys. Rev. Lett. 101, 1 (2008).
http://dx.doi.org/10.1103/PhysRevLett.101.266402
16.
16. S. Reineke, F. Lindner, G. Schwartz, N. Seidler, K. Walzer, B. Lüssem, and K. Leo, Nature 459, 234 (2009).
http://dx.doi.org/10.1038/nature08003
17.
17. M. Kaliteevski, I. Iorsh, S. Brand, R. A. Abram, J. M. Chamberlain, A. V. Kavokin, and I. A. Shelykh, Phys. Rev. B 76, 165415 (2007).
http://dx.doi.org/10.1103/PhysRevB.76.165415
18.
18. M. Kaliteevski, S. Brand, R. A. Abram, I. Iorsh, A. V. Kavokin, and I. A. Shelykh, Appl. Phys. Lett. 95, 251108 (2009).
http://dx.doi.org/10.1063/1.3266841
19.
19. C. W. Lai, N. Y. Kim, S. Utsunomiya, G. Roumpos, H. Deng, M. D. Fraser, T. Byrnes, P. Recher, N. Kumada, T. Fujisawa et al., Nature 450, 529 (2007).
http://dx.doi.org/10.1038/nature06334
20.
20. S. Utsunomiya, L. Tian, G. Roumpos, C. W. Lai, N. Kumada, T. Fujisawa, M. Kuwata-Gonokami, A. Löffler, S. Höfling, A. Forchel et al., Nat. Phys. 4, 700 (2008).
http://dx.doi.org/10.1038/nphys1034
21.
21. R. Brückner, M. Sudzius, S. Hintschich, H. Fröb, V. Lyssenko, and K. Leo, Phys. Rev. B 83, 1 (2011).
22.
22. C. Böckler, S. Reitzenstein, C. Kistner, R. Debusmann, A. Löffler, T. Kida, S. Höfling, A. Forchel, L. Grenouillet, J. Claudon et al., Appl. Phys. Lett. 92, 091107 (2008).
http://dx.doi.org/10.1063/1.2890166
23.
23. S. Reitzenstein, A. Bazhenov, A. Gorbunov, C. Hofmann, S. Münch, A. Löffler, M. Kamp, J. P. Reithmaier, V. D. Kulakovskii, and A. Forchel, Appl. Phys. Lett. 89, 051107 (2006).
http://dx.doi.org/10.1063/1.2266231
24.
24. J. Haase, S. Shinohara, P. Mundra, G. Risse, V. G. Lyssenko, H. Fröb, M. Hentschel, A. Eychmüller, and K. Leo, Appl. Phys. Lett. 97, 211101 (2010).
http://dx.doi.org/10.1063/1.3517566
25.
25. G. Panzarini, L. Andreani, A. Armitage, D. Baxter, M. Skolnick, V. Astratov, J. Roberts, A. Kavokin, M. Vladimirova, and M. Kaliteevski, Phys. Rev. B 59, 5082 (1999).
http://dx.doi.org/10.1103/PhysRevB.59.5082
26.
26. E. Siebert-Henze, M. Langner, M. Sudzius, S. I. Hintschich, H. Fröb, V. G. Lyssenko, and K. Leo, Appl. Phys. Lett. 95, 191116 (2009).
http://dx.doi.org/10.1063/1.3259719
27.
27. M. Langner, M. Sudzius, H. Fröb, V. G. Lyssenko, and K. Leo, Appl. Phys. Lett. 95, 091109 (2009).
http://dx.doi.org/10.1063/1.3222981
28.
28. A. Muller, C.-K. Shih, J. Ahn, D. Lu, D. Gazula, and D. G. Deppe, Appl. Phys. Lett. 88, 031107 (2006).
http://dx.doi.org/10.1063/1.2158519
29.
29. R. I. Kaitouni, O. El Daïf, A. Baas, M. Richard, T. Paraiso, P. Lugan, T. Guillet, F. Morier-Genoud, J. Ganière, J. Staehli et al., Phys. Rev. B 74, 1 (2006).
http://dx.doi.org/10.1103/PhysRevB.74.155311
30.
30. T. Gutbrod, M. Bayer, A. Forchel, P. Knipp, T. Reinecke, A. Tartakovskii, V. Kulakovskii, N. Gippius, and S. Tikhodeev, Phys. Rev. B 59, 2223 (1999).
http://dx.doi.org/10.1103/PhysRevB.59.2223
31.
journal-id:
http://aip.metastore.ingenta.com/content/aip/journal/apl/100/10/10.1063/1.3690053
Loading
View: Figures

Figures

Image of FIG. 1.

Click to view

FIG. 1.

(Color online) (a) Schematic of the organic microcavity consisting of two DBRs and an Alq3:DCM active layer with inserted, perforated silver layer of 40 nm thickness and holes with diameters ranging from 3 to 50 μm. (b) Electron micrograph of the silver layer perforated by round holes (taken before the active layer and the top DBR was evaporated).

Image of FIG. 2.

Click to view

FIG. 2.

(Color online) (a)-(c) Angle-resolved photoluminescence spectra (logarithmic color scale) of the metal-OMC excited centrally in three holes of (a) 4 μm, (b) 7 μm, and (c) 10 μm diameter by a 405 nm cw laser beam with a 2 μm-diameter spot.

Image of FIG. 3.

Click to view

FIG. 3.

(Color online) Spectrally resolved near field emission (logarithmic color scale) of an 8 μm diameter hole. The white lines indicate the hole boundaries.

Image of FIG. 4.

Click to view

FIG. 4.

(Color online) (a) Measured angle and wavelength dependent PL intensity of the ∼4 μm mesa (detail of Fig. 2(a)). (b) Calculated far-field transmission spectrum (for R = 1.85 μm, , and ). Each submode is calculated with an intensity normalized to 1 (brackets indicate overlapping modes).

Loading

Article metrics loading...

/content/aip/journal/apl/100/10/10.1063/1.3690053
2012-03-08
2014-04-20

Abstract

Two optical Tamm plasmons and a discretized microcavity state are observed simultaneously in an organic microcavity by angle-resolved photoluminescence spectroscopy. The Tamm plasmons form as a result of a 40 nm silver layer placed between the bottom distributed Bragg reflector and the cavity layer. This silver layer is perforated by round holes of a few microns size, generating optical mesas from which discretized microcavity states are observed concurrently. The discretization and the intensity of the different states are studied as a function of angle and hole diameter and compared to analytical calculations.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/100/10/1.3690053.html;jsessionid=2ie22h2hogvdq.x-aip-live-01?itemId=/content/aip/journal/apl/100/10/10.1063/1.3690053&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Mode discretization in an organic microcavity including a perforated silver layer
http://aip.metastore.ingenta.com/content/aip/journal/apl/100/10/10.1063/1.3690053
10.1063/1.3690053
SEARCH_EXPAND_ITEM