1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Mode discretization in an organic microcavity including a perforated silver layer
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/100/10/10.1063/1.3690053
1.
1. J. M. Gérard, Appl. Phys. Lett. 69, 449 (1996).
http://dx.doi.org/10.1063/1.118135
2.
2. J. Reithmaier, M. Röhner, H. Zull, F. Schäfer, A. Forchel, P. Knipp, and T. Reinecke, Phys. Rev. Lett. 78, 378 (1997).
http://dx.doi.org/10.1103/PhysRevLett.78.378
3.
3. M. Obert, B. Wild, G. Bacher, A. Forchel, R. André, and L. S. Dang, Appl. Phys. Lett. 80, 1322 (2002).
http://dx.doi.org/10.1063/1.1452792
4.
4. B. Gayral, J. M. Gérard, B. Legrand, E. Costard, and V. Thierry-Mieg, Appl. Phys. Lett. 72, 1421 (1998).
http://dx.doi.org/10.1063/1.120582
5.
5. D. Sanvitto, A. Daraei, A. Tahraoui, M. Hopkinson, P. W. Fry, D. M. Whittaker, and M. S. Skolnick, Appl. Phys. Lett. 86, 191109 (2005).
http://dx.doi.org/10.1063/1.1925774
6.
6. B. Ohnesorge, M. Bayer, A. Forchel, J. Reithmaier, N. Gippius, and S. Tikhodeev, Phys. Rev. B 56, R4367 (1997).
http://dx.doi.org/10.1103/PhysRevB.56.R4367
7.
7. J. Gérard, B. Sermage, B. Gayral, B. Legrand, E. Costard, and V. Thierry-Mieg, Phys. Rev. Lett. 81, 1110 (1998).
http://dx.doi.org/10.1103/PhysRevLett.81.1110
8.
8. D. L. Huffaker, D. G. Deppe, and T. J. Rogers, Appl. Phys. Lett. 65, 1611 (1994).
http://dx.doi.org/10.1063/1.112927
9.
9. M. Langner, R. Gehlhaar, C. Schriever, H. Fröb, V. G. Lyssenko, and K. Leo, Appl. Phys. Lett. 91, 181119 (2007).
http://dx.doi.org/10.1063/1.2804565
10.
10. O. El Daïf, G. Nardin, T. K. Paraïso, A. Baas, M. Richard, J.-P. Brantut, T. Guillet, F. Morier-Genoud, and B. Deveaud-Plédran, Appl. Phys. Lett. 92, 081910 (2008).
http://dx.doi.org/10.1063/1.2885018
11.
11. D. Lu, J. Ahn, S. Freisem, D. Gazula, and D. G. Deppe, Appl. Phys. Lett. 87, 163105 (2005).
http://dx.doi.org/10.1063/1.2099525
12.
12. B. Min, E. Ostby, V. Sorger, E. Ulin-Avila, L. Yang, X. Zhang, and K. Vahala, Nature 457, 455 (2009).
http://dx.doi.org/10.1038/nature07627
13.
13. S. Reitzenstein, T. Heindel, C. Kistner, A. Rahimi-Iman, C. Schneider, S. Höfling, and A. Forchel, Appl. Phys. Lett. 93, 061104 (2008).
http://dx.doi.org/10.1063/1.2969397
14.
14. T. Heindel, C. Schneider, M. Lermer, S. H. Kwon, T. Braun, S. Reitzenstein, S. Höfling, M. Kamp, and A. Forchel, Appl. Phys. Lett. 96, 011107 (2010).
http://dx.doi.org/10.1063/1.3284514
15.
15. D. Bajoni, E. Semenova, A. Lemaître, S. Bouchoule, E. Wertz, P. Senellart, S. Barbay, R. Kuszelewicz, and J. Bloch, Phys. Rev. Lett. 101, 1 (2008).
http://dx.doi.org/10.1103/PhysRevLett.101.266402
16.
16. S. Reineke, F. Lindner, G. Schwartz, N. Seidler, K. Walzer, B. Lüssem, and K. Leo, Nature 459, 234 (2009).
http://dx.doi.org/10.1038/nature08003
17.
17. M. Kaliteevski, I. Iorsh, S. Brand, R. A. Abram, J. M. Chamberlain, A. V. Kavokin, and I. A. Shelykh, Phys. Rev. B 76, 165415 (2007).
http://dx.doi.org/10.1103/PhysRevB.76.165415
18.
18. M. Kaliteevski, S. Brand, R. A. Abram, I. Iorsh, A. V. Kavokin, and I. A. Shelykh, Appl. Phys. Lett. 95, 251108 (2009).
http://dx.doi.org/10.1063/1.3266841
19.
19. C. W. Lai, N. Y. Kim, S. Utsunomiya, G. Roumpos, H. Deng, M. D. Fraser, T. Byrnes, P. Recher, N. Kumada, T. Fujisawa et al., Nature 450, 529 (2007).
http://dx.doi.org/10.1038/nature06334
20.
20. S. Utsunomiya, L. Tian, G. Roumpos, C. W. Lai, N. Kumada, T. Fujisawa, M. Kuwata-Gonokami, A. Löffler, S. Höfling, A. Forchel et al., Nat. Phys. 4, 700 (2008).
http://dx.doi.org/10.1038/nphys1034
21.
21. R. Brückner, M. Sudzius, S. Hintschich, H. Fröb, V. Lyssenko, and K. Leo, Phys. Rev. B 83, 1 (2011).
22.
22. C. Böckler, S. Reitzenstein, C. Kistner, R. Debusmann, A. Löffler, T. Kida, S. Höfling, A. Forchel, L. Grenouillet, J. Claudon et al., Appl. Phys. Lett. 92, 091107 (2008).
http://dx.doi.org/10.1063/1.2890166
23.
23. S. Reitzenstein, A. Bazhenov, A. Gorbunov, C. Hofmann, S. Münch, A. Löffler, M. Kamp, J. P. Reithmaier, V. D. Kulakovskii, and A. Forchel, Appl. Phys. Lett. 89, 051107 (2006).
http://dx.doi.org/10.1063/1.2266231
24.
24. J. Haase, S. Shinohara, P. Mundra, G. Risse, V. G. Lyssenko, H. Fröb, M. Hentschel, A. Eychmüller, and K. Leo, Appl. Phys. Lett. 97, 211101 (2010).
http://dx.doi.org/10.1063/1.3517566
25.
25. G. Panzarini, L. Andreani, A. Armitage, D. Baxter, M. Skolnick, V. Astratov, J. Roberts, A. Kavokin, M. Vladimirova, and M. Kaliteevski, Phys. Rev. B 59, 5082 (1999).
http://dx.doi.org/10.1103/PhysRevB.59.5082
26.
26. E. Siebert-Henze, M. Langner, M. Sudzius, S. I. Hintschich, H. Fröb, V. G. Lyssenko, and K. Leo, Appl. Phys. Lett. 95, 191116 (2009).
http://dx.doi.org/10.1063/1.3259719
27.
27. M. Langner, M. Sudzius, H. Fröb, V. G. Lyssenko, and K. Leo, Appl. Phys. Lett. 95, 091109 (2009).
http://dx.doi.org/10.1063/1.3222981
28.
28. A. Muller, C.-K. Shih, J. Ahn, D. Lu, D. Gazula, and D. G. Deppe, Appl. Phys. Lett. 88, 031107 (2006).
http://dx.doi.org/10.1063/1.2158519
29.
29. R. I. Kaitouni, O. El Daïf, A. Baas, M. Richard, T. Paraiso, P. Lugan, T. Guillet, F. Morier-Genoud, J. Ganière, J. Staehli et al., Phys. Rev. B 74, 1 (2006).
http://dx.doi.org/10.1103/PhysRevB.74.155311
30.
30. T. Gutbrod, M. Bayer, A. Forchel, P. Knipp, T. Reinecke, A. Tartakovskii, V. Kulakovskii, N. Gippius, and S. Tikhodeev, Phys. Rev. B 59, 2223 (1999).
http://dx.doi.org/10.1103/PhysRevB.59.2223
31.
journal-id:
http://aip.metastore.ingenta.com/content/aip/journal/apl/100/10/10.1063/1.3690053
Loading
/content/aip/journal/apl/100/10/10.1063/1.3690053
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apl/100/10/10.1063/1.3690053
2012-03-08
2014-08-21

Abstract

Two optical Tamm plasmons and a discretized microcavity state are observed simultaneously in an organic microcavity by angle-resolved photoluminescence spectroscopy. The Tamm plasmons form as a result of a 40 nm silver layer placed between the bottom distributed Bragg reflector and the cavity layer. This silver layer is perforated by round holes of a few microns size, generating optical mesas from which discretized microcavity states are observed concurrently. The discretization and the intensity of the different states are studied as a function of angle and hole diameter and compared to analytical calculations.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/100/10/1.3690053.html;jsessionid=485s516m06lmt.x-aip-live-03?itemId=/content/aip/journal/apl/100/10/10.1063/1.3690053&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Mode discretization in an organic microcavity including a perforated silver layer
http://aip.metastore.ingenta.com/content/aip/journal/apl/100/10/10.1063/1.3690053
10.1063/1.3690053
SEARCH_EXPAND_ITEM