1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Simultaneous enhancement of charge transport and exciton diffusion in single-crystal-like organic semiconductors
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/100/10/10.1063/1.3692106
1.
1. P. Peumans, A. Yakimov, and S. R. Forrest, J. Appl. Phys. 95, 2938 (2004).
http://dx.doi.org/10.1063/1.1646446
2.
2. R. R. Lunt, J. B. Benziger, and S. R. Forrest, Adv. Mater. 22, 1233 (2010).
http://dx.doi.org/10.1002/adma.v22:11
3.
3. R. W. I. de Boer, M. E. Gershenson, A. F. Morpurgo, and V. Podzorov, Phys. Status Solidi A 201, 1302 (2004).
http://dx.doi.org/10.1002/(ISSN)1521-396X
4.
4. H. Najafov, B. Lee, Q. Zhou, L. C. Feldman, and V. Podzorov, Nature Mater. 9, 938 (2010).
http://dx.doi.org/10.1038/nmat2872
5.
5. R. J. Tseng, R. Chan, V. C. Tung, and Y. Yang, Adv. Mater. 20, 435 (2008).
http://dx.doi.org/10.1002/adma.200701374
6.
6. H. B. Wang, F. Zhu, J. L. Yang, Y. H. Geng, and D. H. Yan, Adv. Mater. 19, 2168 (2007).
http://dx.doi.org/10.1002/adma.200602566
7.
7. B. Yu, L. Z. Huang, H. B. Wang, and D. H. Yan, Adv. Mater. 22, 1017 (2009).
http://dx.doi.org/10.1002/adma.200903023
8.
8. F. Zhu, J. B. Yang, D. Song, C. H. Li, and D. H. Yan, Appl. Phys. Lett. 94, 143305 (2009).
http://dx.doi.org/10.1063/1.3118581
9.
9. M. A. Lampert and P. Mark, Current Injection in Solids (Academic, New York, 1970).
10.
10. Z. Chiguvare and V. Dyakonov, Phys. Rev. B 70, 235207 (2004).
http://dx.doi.org/10.1103/PhysRevB.70.235207
11.
11. Z. R. Hong, B. Maennig, R. Lessmann, M. Pfeiffer, K. Leo, and P. Simon, Appl. Phys. Lett. 90, 203505 (2007).
http://dx.doi.org/10.1063/1.2739364
12.
12. L. Z. Huang, C. F. Liu, X. L. Qiao, H. K. Tian, Y. H. Geng, and D. Yan, Adv. Mater. 23, 3455 (2011).
http://dx.doi.org/10.1002/adma.201101353
13.
13. K. C. Kao and W. Hwang, Electrical Transport in Solids (Pergamon, Oxford, UK, 1981).
14.
14. A. K. Kapoor, S. C. Jain, J. Poortmans, V. Kumar, and R. Mertens, J. Appl. Phys. 92, 3835 (2002).
http://dx.doi.org/10.1063/1.1506394
15.
15. F. Schauer, S. Nespurek, and H. Valerian, J. Appl. Phys. 80, 880 (1996).
http://dx.doi.org/10.1063/1.362897
16.
16. C. Krellner, S. Haas, C. Goldmann, K. P. Pernstich, D. J. Gundlach, and B. Batlogg, Phys. Rev. B 75, 245115 (2007).
http://dx.doi.org/10.1103/PhysRevB.75.245115
17.
17. W. L. Kalb, S. Haas, C. Krellner, T. Mathis, and B. Batlogg, Phys. Rev. B 81, 155315 (2010).
http://dx.doi.org/10.1103/PhysRevB.81.155315
18.
18. S. M. Sze and Kwok K. Ng, Physics of Semiconductor Devices (Wiley, Hoboken, 2007).
19.
journal-id:
http://aip.metastore.ingenta.com/content/aip/journal/apl/100/10/10.1063/1.3692106
Loading
View: Figures

Figures

Image of FIG. 1.

Click to view

FIG. 1.

(Color online) AFM images of WEG-BP2T (5 nm)/ZnPc (40 nm) films (a) and ZnPc (40 nm) (b). (All 4 × 4 μm2). (c) Current-voltage curves of devices with layer structures ITO/PEDOT: PSS/BP2T/ZnPc (40 nm)/F16CuPc (1 nm)/Au and ITO/PEDOT: PSS/ZnPc(40 nm)/F16CuPc(1 nm)/Au. Open symbols are experimental date, and the solid lines are simulated fits. The diameter of circular electrode is 2 mm.

Image of FIG. 2.

Click to view

FIG. 2.

(Color online) (a) EQE spectra for organic solar cells with the device structure: ITO/PEDOT: PSS/WEG-ZnPc (20 nm)/C60 (40 nm)/buffer layer (5 nm)/Al and ITO/PEDOT: PSS/normal-ZnPc (20 nm)/C60 (40 nm)/buffer layer (5 nm)/Al. The inset shows current density-voltage characteristics for these two devices under 100 mW/cm2 AM1.5 G simulated solar illumination. (b) Calculated EQE as a function of ZnPc exciton diffusion length L D at λ = 620 nm. The inset shows the way how to get the value of η CT η CC.

Image of FIG. 3.

Click to view

FIG. 3.

(Color online) SCLC with applied voltage at different temperatures for (a) WEG-ZnPc and (b) normal-ZnPc. The solid lines are simulated fits to get the value of m. (c) Arrhenius plots of ln (I) at the voltage V = 2 V.

Image of FIG. 4.

Click to view

FIG. 4.

(Color online) (a) Current density for a fixed applied voltage V vs the inverse temperature for the data plotted in Fig. 2(a). The straight lines are the Arrhenius fits used to determine the activation energy E A (V). The inset shows the resulting E A (V). (b) Trap density of states above the valence band for WEG-ZnPc and normal-ZnPc.

Loading

Article metrics loading...

/content/aip/journal/apl/100/10/10.1063/1.3692106
2012-03-07
2014-04-18

Abstract

The chargetransport and excitondiffusion have been simultaneously enhanced in the highly ordered and oriented zinc phthalocyanine (ZnPc) films which are fabricated by weak epitaxy growth method compared to the normal ZnPc films(chargemobility from 4 × 10−5 cm2/Vs to 1.1 × 10−4 cm2/Vs and excitondiffusion length from 9 nm to 16 nm). The temperature dependent current-voltage (I-V) characteristics are utilized to investigate the chargetransport mechanism, which reveal the clear mechanism and the role of traps in different films. These results reveal the direct relationship between traps properties and transport behavior of both exciton and charge.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/100/10/1.3692106.html;jsessionid=30sbev45dq70s.x-aip-live-06?itemId=/content/aip/journal/apl/100/10/10.1063/1.3692106&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Simultaneous enhancement of charge transport and exciton diffusion in single-crystal-like organic semiconductors
http://aip.metastore.ingenta.com/content/aip/journal/apl/100/10/10.1063/1.3692106
10.1063/1.3692106
SEARCH_EXPAND_ITEM