1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Direct probing of selective electron and hole accumulation processes along the channel of an ambipolar double-layer field-effect transistor by optical modulation spectroscopy
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/100/10/10.1063/1.3692581
1.
1. G. Meller and T. Grasser, Organic Electronics (Springer, Berlin, 2009).
2.
2. H. Klauk, Chem. Soc. Rev. 39, 2643 (2010).
http://dx.doi.org/10.1039/b909902f
3.
3. A. Dodabalapur, H. E. Katz, L. Torsi, and R. C. Haddon, Science 269, 1560 (1995).
http://dx.doi.org/10.1126/science.269.5230.1560
4.
4. J. Zaumseil and H. Sirringhaus, Chem. Rev. 107, 1296 (2007).
http://dx.doi.org/10.1021/cr0501543
5.
5. R. Capelli, S. Toffanin, G. Generali, H. Usta, A. Facchetti, and M. Muccini, Nature Mater. 9, 496 (2010).
http://dx.doi.org/10.1038/nmat2751
6.
6. S. D. Wang, K. Kanani, Y. Ouchi, and K. Seki, Org. Electron. 7, 457 (2006).
http://dx.doi.org/10.1016/j.orgel.2006.06.001
7.
7. R. Schmechel, M. Ahles, and H. von Seggern, J. Appl. Phys. 98, 084511 (2005).
http://dx.doi.org/10.1063/1.2106009
8.
8. E. J. Meijer, D. M. Deleeuw, S. Setayesh, E. Van Veenendaal, B.-H. Huisman, P. W. M. Blom, J. C. Hummelen, U. Scherf, and T. M. Klapwijk, Nature Mater. 2, 678 (2003).
http://dx.doi.org/10.1038/nmat978
9.
9. L. L. Chua, J. Zaumseil, J. F. Chang, E. C.-W. Ou, P. K.-H. Ho, H. Sirringhaus, and R. H. Friend, Nature (London) 434, 194 (2005).
http://dx.doi.org/10.1038/nature03376
10.
10. A. M. Lampert and P. Mark, Current Injection in Solids (Academic, New York, 1970).
11.
11. H. Wang, J. Wang, X. Yan, J. Shi, H. Tian, Y. Geng, and D. Yan, Appl. Phys. Lett. 88, 133508 (2006).
http://dx.doi.org/10.1063/1.2190445
12.
12. L. Zhang, D. Taguchi, T. Manaka, and M. Iwamoto, Appl. Phys. Lett. 99, 083301 (2011).
http://dx.doi.org/10.1063/1.3626851
13.
13. Z. Q. Li, G. M. Wang, N. Sai, D. Moses, M. C. Martin, M. Di Ventra, A. J. Heeger, and D. N. Basov, Nano. Lett. 6, 224 (2006).
http://dx.doi.org/10.1021/nl052166+
14.
14. H. Tanaka, S. Watanabe, H. Ito, K. Marumoto, and S. Kuroda, Appl. Phys. Lett. 94, 103308 (2009).
http://dx.doi.org/10.1063/1.3100193
15.
15. H. Matui and T. Hasegawa, Appl. Phys. Lett. 95, 223301 (2009).
http://dx.doi.org/10.1063/1.3268465
16.
16. L. Zhang, D. Taguchi, H. Masada, T. Manaka, and M. Iwamoto, Jpn. J. Appl. Phys. 51, 02BK08 (2012).
http://dx.doi.org/10.1143/JJAP.51.02BK08
17.
17. T. Manaka, S. Kawashima, and M. Iwamoto, Appl. Phys. Lett. 97, 113302 (2010).
http://dx.doi.org/10.1063/1.3490716
18.
18. F. Rohlfing, T. Yamada, and T. Tsutsui, J. Appl. Phys. 86, 4978 (1999).
http://dx.doi.org/10.1063/1.371469
19.
19. K. Itaka, M. Yamashiro, J. Yamaguchi, M. Haemori, S. Yaginuma, Y. Matsumoto, M. Kondo, and H. Koinuma, Adv. Mater. 18, 1713 (2006).
http://dx.doi.org/10.1002/adma.200502752
20.
20. S. Haas, H. Matsui, and T. Hasegawa, Phys. Rev. B 82, 161301R (2010).
http://dx.doi.org/10.1103/PhysRevB.82.161301
21.
21. Y. Harima, Y. Ishiguro, K. Komaguchi, I. Imae, and Y. Ooyama, Chem. Phys. Lett. 495, 228 (2010).
http://dx.doi.org/10.1016/j.cplett.2010.06.088
22.
22. M. W. B. Wilson, A. Rao, J. Clark, R. S. S. Kumar, D. Brida, G. Cerullo, and R. H. Friend, J. Am. Chem. Soc. 133, 11830 (2011).
http://dx.doi.org/10.1021/ja201688h
23.
23. V. K. Thorsmølle, R. D. Averitt, J. Demsar, D. L. Smith, S. Tretiak, R. L. Martin, X. Chi, B. K. Crone, A. P. Ramirez, and A. J. Taylor, Phys. Rev. Lett. 102, 017401 (2009).
http://dx.doi.org/10.1103/PhysRevLett.102.017401
24.
24. T. Manaka, E. Lim, R. Tamura, and M. Iwamoto, Nat. Photonics 1, 581 (2007).
http://dx.doi.org/10.1038/nphoton.2007.172
25.
25. L. Zhang, D. Taguchi, J. Li, T. Manaka, and M. Iwamoto, Appl. Phys. Lett. 98, 092109 (2011).
http://dx.doi.org/10.1063/1.3560054
26.
26. S. Leach, M. Vervloet, A. Desprès, E. Brèheret, J. P. Hare, T. J. Dennis, H. W. Kroto, R. Taylor, and D. R. M. Walton, Chem. Phys. 160, 451 (1992).
http://dx.doi.org/10.1016/0301-0104(92)80012-K
27.
27. J. Hora, P. Pánek, K. Navrátil, B. Handlířová, J. Humlíček, H. Sitter, and D. Stifter, Phys. Rev. B 54, 5106 (1996).
http://dx.doi.org/10.1103/PhysRevB.54.5106
28.
28. K. Kanemoto, A. Ogata, N. Inoue, T. Kusumoto, H. Hashimoto, I. Akai, and T. Karasawa, Appl. Phys. Lett. 97, 033307 (2010).
http://dx.doi.org/10.1063/1.3467007
29.
29. M. Kiguchi, M. Nakayama, T. Shimada, and K. Saiki, Phys. Rev. B 71, 035332 (2005).
http://dx.doi.org/10.1103/PhysRevB.71.035332
30.
30. A. Rao, M. W. B. Wilson, J. M. Hodgkiss, S. A. Seifried, H. Bässler, and R. H. Friend, J. Am. Chem. Soc. 132, 12698 (2010).
http://dx.doi.org/10.1021/ja1042462
31.
31. A. Shehu, S. D. Quiroga, P. D’Angelo, C. Albonetti, F. Borgatti, M. Murgia, A. Scorzoni, P. Stoliar, and F. Biscarini, Phys. Rev. Lett. 104, 246602 (2010).
http://dx.doi.org/10.1103/PhysRevLett.104.246602
32.
journal-id:
http://aip.metastore.ingenta.com/content/aip/journal/apl/100/10/10.1063/1.3692581
Loading
View: Figures

Figures

Image of FIG. 1.

Click to view

FIG. 1.

(Color online) (a) Transfer characteristics of the pentacene and C60 single layer OFETs and C60/pentacene double-layer OFET. The arrows indicate the scale of the measured drain current (), V. (b) Experimental set-up for the modulation spectroscopy measurements.

Image of FIG. 2.

Click to view

FIG. 2.

(Color online) Modulation spectra of (a) pentacene and (b) C60 single-layer OFETs under various gate voltages , respectively. The three insets from top to bottom are the proposed model of the injected carrier induced effect in pentacene case, the device structure and the proposed model of the injected carrier induced effect in C60 case, respectively.

Image of FIG. 3.

Click to view

FIG. 3.

(Color online) Modulation spectroscopy of the ambipolar double-layer C60/pentacene OFET with 50 nm thick pentacene layer under hole (a) and electron (b) accumulation cases, respectively. The arrows indicate the peaks, which shift with . The proposed carrier accumulation processes under the hole and electron accumulation cases were shown in the insets of (a) and (b), respectively. The first derivative of the pentacene absorption spectrum (50 nm) was also shown in (b).

Image of FIG. 4.

Click to view

FIG. 4.

(Color online) Modulation spectroscopy of the ambipolar double-layer C60/pentacene OFET with 1 nm thick pentacene layer under hole (a) and electron (b) accumulation cases, respectively. The arrows indicate the peaks, which shift with . The inset shows the voltage dependent modulations at 1.90 eV (hole accumulation case, linear) and 1.86 eV (electron accumulation case, quadratic).

Loading

Article metrics loading...

/content/aip/journal/apl/100/10/10.1063/1.3692581
2012-03-06
2014-04-24

Abstract

By using optical modulation spectroscopy, the electronic state and selective carrier accumulation processes in the channel region of unipolar and ambipolar organic field effect transistors(OFETs) were directly probed. The modulated spectra of unipolar single-layer pentacene and C60OFETs corresponding well with their I–Vcharacteristics were understood in terms of the injected carrier induced effect. On the other hand, for the double-layer C60/pentacene OFETs, it is indicated that the modulated spectra under both hole and electron accumulation cases generated mainly from the pentacene layer but with different characteristics, implying that the injected carriers accumulated at spatially separated locations.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/100/10/1.3692581.html;jsessionid=3va0jnipp715i.x-aip-live-01?itemId=/content/aip/journal/apl/100/10/10.1063/1.3692581&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Direct probing of selective electron and hole accumulation processes along the channel of an ambipolar double-layer field-effect transistor by optical modulation spectroscopy
http://aip.metastore.ingenta.com/content/aip/journal/apl/100/10/10.1063/1.3692581
10.1063/1.3692581
SEARCH_EXPAND_ITEM