1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Top-to-bottom optimization of the optical performance of the tandem organic solar cells with thin metal film as interlayer
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/100/10/10.1063/1.3692597
1.
1. Y. Yuan, J. Huang, and G. Li, Green 1, 65 (2011).
http://dx.doi.org/10.1515/GREEN.2011.009
2.
2. A. Hadipour, B. de Boer, J. Wildeman, F. B. Kooistra, J. C. Hummelen, M.G. R. Turbiez, M. M. Wienk, R. A. J. Janssen, and P. W. M. Blom, Adv. Funct. Mater. 16, 1897 (2006).
http://dx.doi.org/10.1002/adfm.200600138
3.
3. A. Hadipour, B. de Boer, and P. W. M. Blom, J. Appl. Phys. 102, 074506 (2007).
http://dx.doi.org/10.1063/1.2786024
4.
4. A. G. F. Janssen, T. Riedl, S. Hamwi, H.-H. Johannes, and W. Kowalsky, Appl. Phys. Lett. 91, 073519 (2007).
http://dx.doi.org/10.1063/1.2772208
5.
5. S. Sista, Z. Hong, M. Park, Z. Xu, and Y. Yang, Adv. Mater. 22, E77E80 (2010).
http://dx.doi.org/10.1002/adma.200902750
6.
6. Y. Long, Appl. Phys. Lett. 95, 193301 (2009).
http://dx.doi.org/10.1063/1.3262967
7.
7. J. Lee, S. Y. Kim, C. Kim, and J. J. Kim, Appl. Phys. Lett. 97, 083306 (2010).
http://dx.doi.org/10.1063/1.3480612
8.
8. Y. Long, Sol. Energy Mater. Sol. Cells 95, 3400 (2011).
http://dx.doi.org/10.1016/j.solmat.2011.07.040
9.
9. T. Y. Cho, C. L. Lin, and C. C. Wu, Appl. Phys. Lett. 88, 111106 (2006).
http://dx.doi.org/10.1063/1.2185077
10.
10. Y. Long, Sol. Energy Mater. Sol. Cells 94, 744 (2010).
http://dx.doi.org/10.1016/j.solmat.2009.12.017
11.
11.See supplementary material at http://dx.doi.org/10.1063/1.3692597 for an illumination of the device structure and total absorption spectrum for the tandem device. [Supplementary Material]
12.
12. C. Tao, S. Ruan, G. Xie, X. Kong, L. Shen, F. Meng, C. Liu, X. Zhang, W. Dong, and W. Chen, Appl. Phys. Lett. 94, 043311 (2009).
http://dx.doi.org/10.1063/1.3076134
13.
13. G. Dennler, K. Forberich, T. Ameri, C. Waldauf, P. Denk, C. J. Brabec, K. Hinger, and A. J. Heeger, J. Appl. Phys. 102, 123109 (2007).
http://dx.doi.org/10.1063/1.2825651
14.
14. J. R. Tumbleston, D. H. Ko, E. T. Samulski, and R. Lopez, Appl. Phys. Lett. 94, 043305 (2009).
http://dx.doi.org/10.1063/1.3075053
15.
15. X. W. Sun and H. S. Kwok, J. Appl. Phys. 86, 408 (1999).
http://dx.doi.org/10.1063/1.370744
16.
16. H. B. Yang, Q. L. Song, C. M. Li, and Z. S. Lu, Energy Environ. Sci. 1, 389 (2008).
http://dx.doi.org/10.1039/b805140b
17.
17. C. Tao, G. Xie, F. Meng, S. Ruan, and W. Chen, J. Phys. Chem. C 115, 12611 (2011).
http://dx.doi.org/10.1021/jp201890q
18.
journal-id:
http://aip.metastore.ingenta.com/content/aip/journal/apl/100/10/10.1063/1.3692597
Loading
View: Figures

Figures

Image of FIG. 1.

Click to view

FIG. 1.

(Color online) (a) Improvement of TAPs for Device A as a function of dtop and dbottom; (b) Improvement of TAPs for Device A with dbottom set at 225 nm. The black triangle denotes the cavity modes of the MMC structure constructed between the Ag interlayer and the top electrode.

Image of FIG. 2.

Click to view

FIG. 2.

(Color online) (a) Absorption spectra of the subcells for the tandem devices with dtop = 55 nm and dbottom = 225 nm; (b) absorption spectra of the subcells for the tandem devices with dtop = 120 nm and dbottom = 225 nm.

Image of FIG. 3.

Click to view

FIG. 3.

(Color online) Absorption spectra of the top cell for Device A with different WO3(II) layer thickness. dtop and dbottom of the devices are set as 120 nm and 225 nm, respectively. Black solid line: for device with 10 nm-thick WO3(I); red dashed line: for device with 50 nm-thick WO3(I). Inset: transmission spectrum of the bottom cell with a structure of Glass/ZnO(I)/Active layer(I)/WO3(I)/Ag/WO3(II).

Image of FIG. 4.

Click to view

FIG. 4.

(Color online) Absorption spectrum of the top cell for Device A with different Ag interlayer thicknesses. dtop and dbottom of the devices are set as 120 nm and 225 nm, respectively. Black dashed line: the transmission spectrum for a 10 nm-thick Ag film on a glass substrate.

Loading

Article metrics loading...

/content/aip/journal/apl/100/10/10.1063/1.3692597
2012-03-07
2014-04-19

Abstract

Top-to-bottom optimization is developed to maximize the absorption for tandem organic solar cells with thin Ag interlayer connecting two subcells. By redshifting the cavity modes of the microcavity between the Ag interlayer and the top electrode, the absorptionspectrum of the top cell can be shifted to the near-infrared wavelength range where the bottom cell has weak absorption. Correspondingly, subcells with highly complementary absorptionspectrum are achieved, and there is an improvement of 17.8% in the total absorbed photons for the tandem device. Additionally, it is revealed that high transparency is not an essential property for the interlayer in tandem devices.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/100/10/1.3692597.html;jsessionid=13rhg77hr6imw.x-aip-live-03?itemId=/content/aip/journal/apl/100/10/10.1063/1.3692597&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Top-to-bottom optimization of the optical performance of the tandem organic solar cells with thin metal film as interlayer
http://aip.metastore.ingenta.com/content/aip/journal/apl/100/10/10.1063/1.3692597
10.1063/1.3692597
SEARCH_EXPAND_ITEM