1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
High brightness alternating current electroluminescence with organic light emitting material
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/100/10/10.1063/1.3692776
1.
1. C. W. Tang and S. A. Van Slyke, Appl. Phys. Lett. 51, 913 (1987).
http://dx.doi.org/10.1063/1.98799
2.
2. X. L. Xu, X. H. Chen, Y. B. Hou, Z. Xu, X. H. Yang, S. G. Yin, Z. J. Wang, X. R. Xu, S. P. Lau, and B. K. Tay, Chem. Phys. Lett. 325, 420 (2000).
http://dx.doi.org/10.1016/S0009-2614(00)00718-1
3.
3. S. Y. Yang, L. Qian, F. Teng, Z. Xu, and X. R. Xu, J. Appl. Phys. 97, 126101 (2005).
http://dx.doi.org/10.1063/1.1927700
4.
4. T. Tsutsui, S. B. Lee, and K. Fujita, Appl. Phys. Lett. 85, 2382 (2004).
http://dx.doi.org/10.1063/1.1795367
5.
5. S. B. Lee, K. Fujita, and T. Tsutsui, Jpn. J. Appl. Phys. 44, 6607 (2005).
http://dx.doi.org/10.1143/JJAP.44.6607
6.
6. D. Adachi, S. Hasui, T. Toyama, and H. Okamoto, Appl. Phys. Lett. 77, 1301 (2000).
http://dx.doi.org/10.1063/1.1290274
7.
7. P. D. Rack and P. H. Holloway, Mater. Sci. Eng. R21, 171 (1998).
8.
8. J. C. Hitt, J. P. Bender, and J. F. Wager, CRC Crit. Rev. Solid State Mater. Sci. 25, 29 (2000).
http://dx.doi.org/10.1080/10408430091149178
9.
9. V. Wood, J. E. Halpert, M. J. Panzer, M. G. Bawendi, and V. Bulovic, Nano Lett. 9, 2367 (2009).
http://dx.doi.org/10.1021/nl900898t
10.
10. A. Perumal, M. Fröbel, S. Gorantla, T. Gemming, B. Lüssem, J. Eckert, and K. Leo, Adv. Funct. Mater. 22, 210 (2012).
http://dx.doi.org/10.1002/adfm.201100747
11.
11. M. Pfeiffer, K. Leo, X. Zhou, J. S. Huang, M. Hofmann, A. Werner, and J. Blochwitz-Nimoth, Org. Electron. 4, 89 (2003).
http://dx.doi.org/10.1016/j.orgel.2003.08.004
12.
12. K. Walzer, B. Maennig, M. Pfeiffer, and K. Leo, Chem. Rev. 107, 1233 (2007).
http://dx.doi.org/10.1021/cr050156n
13.
13. H. Kleemann, R. Gutierrez, F. Lindner, S. Avdoshenko, P. D. Manrique, B. Lüssem, G. Cuniberti, and K. Leo, Nano Lett. 10, 4929 (2010).
http://dx.doi.org/10.1021/nl102916n
14.
journal-id:
http://aip.metastore.ingenta.com/content/aip/journal/apl/100/10/10.1063/1.3692776
Loading
View: Figures

Figures

Image of FIG. 1.

Click to view

FIG. 1.

(Color online) Two different device structures showing the organic emission layer and the electrochemically doped charge transport layers sandwiched between either SiO2 or HfO2 insulating oxide layers.

Image of FIG. 2.

Click to view

FIG. 2.

(Color online) (a) The AC-EL for both the device structures with either SiO2 or HfO2 insulating layers is superposed on PL spectra of the emission dye. (b) Plot of the AC-EL luminance as a function of AC voltage at 10 kHz for the device with 60 nm-thick SiO2 insulating layers and a device with the same thickness HfO2 insulating layers having the same organic layer sequence and thickness. (c) Luminance-frequency (L-f) characteristics for both the device structures with either SiO2 or HfO2 insulating layers.

Image of FIG. 3.

Click to view

FIG. 3.

(Color online) (a) Plot of time-resolved AC-EL plot as a function of AC voltage. (b) Luminous efficacy () as a function of AC voltage for the two different devices with SiO2 or HfO2 insulating layers.

Image of FIG. 4.

Click to view

FIG. 4.

(Color online) (a). AC currents in the device as a function of AC voltage. We observe AC currents of the order of milliamperes. The difference in the dielectric constant of the two oxides leads to different AC currents in the device. (b) DC tests made on both the device structures with either SiO2 or HfO2 insulating layers yield currents of the order of microamperes. (c) The DC luminance as a function of DC voltage plot for the devices. We observe faint luminance of 5 cdm−2 at 40 V in forward bias for the device with HfO2 insulating layers, while we observe no luminance for the device with SiO2 insulating layers.

Loading

Article metrics loading...

/content/aip/journal/apl/100/10/10.1063/1.3692776
2012-03-08
2014-04-23

Abstract

We report on an alternating current(AC) organic electroluminance(EL)device with high brightness of over 1500 cdm−2 and very low threshold voltage for the onset of AC luminance (10 V). The device consists of organic layers enclosed in a pair of either silicon dioxide (SiO2) or hafnium dioxide (HfO2) insulating dielectric layers. We observe internal charge carriergeneration and luminance due to charge carrier recombination within the device under the AC drive without charge injection. We compare AC-EL demonstrated for the two devices and show that the threshold voltage for the onset of luminance can be significantly lowered using high dielectric constant (κ) HfO2 insulating layers. Further, we discuss the limitations of internal charge carriergeneration and the device performance supported with the results from time resolved measurements.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/100/10/1.3692776.html;jsessionid=1nlrf8el0vdb4.x-aip-live-02?itemId=/content/aip/journal/apl/100/10/10.1063/1.3692776&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: High brightness alternating current electroluminescence with organic light emitting material
http://aip.metastore.ingenta.com/content/aip/journal/apl/100/10/10.1063/1.3692776
10.1063/1.3692776
SEARCH_EXPAND_ITEM