1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Green luminescence in silica glass: A possible indicator of subsurface fracture
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/100/11/10.1063/1.3693393
1.
1. J. A. Menapace, B. Penetrante, D. Golini, A. F. Slomba, P. E. Miller, T. G. Parham, M. Nichols, and J. Peterson, Proc. SPIE 4679, 56 (2002).
http://dx.doi.org/10.1117/12.461725
2.
2. J. Néauport, P. Cormont, L. Lamaignère, C. Ambard, F. Pilon, and H. Bercegol, Opt. Commun. 281, 3802 (2008).
http://dx.doi.org/10.1016/j.optcom.2008.03.031
3.
3. T. Suratwala, L. Wong, P. Miller, M. D. Feit, J. Menapace, R. Steele, P. Davis, and D. Walmer, J. Non-Cryst. Solids 352, 5601 (2006).
http://dx.doi.org/10.1016/j.jnoncrysol.2006.09.012
4.
4. T. I. Suratwala, P. E. Miller, J. D. Bude, W. A. Steele, N. Shen, M. V. Monticelli, M. D. Feit, T. A. Laurence, M. A. Norton, C. W. Carr et al., J. Am. Ceram. Soc. 94, 416 (2010).
http://dx.doi.org/10.1111/j.1551-2916.2010.04112.x
5.
5. T. A. Laurence, J. D. Bude, N. Shen, T. Feldman, P. E. Miller, W. A. Steele, and T. Suratwala, Appl. Phys. Lett. 94, 151114 (2009).
http://dx.doi.org/10.1063/1.3119622
6.
6. P. E. Miller, J. D. Bude, T. I. Suratwala, N. Shen, T. A. Laurence, W. A. Steele, J. Menapace, M. D. Feit, and L. L. Wong, Opt. Lett. 35, 2702 (2010).
http://dx.doi.org/10.1364/OL.35.002702
7.
7. J. Fournier, J. Néauport, P. Grua, V. Jubera, E. Fargin, D. Talaga, and S. Jouannigot, Opt. Express 18, 21557 (2010).
http://dx.doi.org/10.1364/OE.18.021557
8.
8. L. Skuja, J. Non-Cryst. Solids 239, 16 (1998).
http://dx.doi.org/10.1016/S0022-3093(98)00720-0
9.
9. H. Nishikawa, R. E. Stahlbush, and J. H. Stathis, Phys. Rev. B 60, 15910 (1999).
http://dx.doi.org/10.1103/PhysRevB.60.15910
10.
10. Y. Sakurai and K. Nagasawa, J. Appl. Phys. 86, 1377 (1999).
http://dx.doi.org/10.1063/1.370897
11.
11. Y. Sakurai, J. Appl. Phys. 95, 543 (2004).
http://dx.doi.org/10.1063/1.1637951
12.
12. J. Fournier, Ph. D. dissertation, Université de Bordeaux I, Bordeaux 2011.
13.
13. J. Rolfe, J. Chem. Phys. 40 1664 (1964);
http://dx.doi.org/10.1063/1.1725376
13. K. M. Ervin, I. Anusiewicz, P. Skurski, J. Simons, and W. C. Lineberger, J. Phys. Chem. A 107, 8521 (2003).
http://dx.doi.org/10.1021/jp0357323
14.
14. H. Nishikawa, E. Watanabe, D. Ito, Y. Sakurai, K. Nagasawa, and Y. Ohki, J. Appl. Phys. 80, 3513 (1996).
http://dx.doi.org/10.1063/1.363223
http://aip.metastore.ingenta.com/content/aip/journal/apl/100/11/10.1063/1.3693393
Loading

Figures

Image of FIG. 1.

Click to view

FIG. 1.

(Color online) Comparison of spectra obtained for pristine silica and etched silica (100 µW laser power). The dotted line curves represent the Gaussian components of the signals.

Image of FIG. 2.

Click to view

FIG. 2.

(Color online) Comparison of photoluminescence under 3.81 eV excitation for non etched (10 µW laser power) and etched indentation (1 mW laser power). The spectrum of etched indentation is enlarged by a factor 10 in order to show its Gaussian components. Signal of etched indentation is e.g., about 30 times stronger than the one of etched surface shown on Figure 1.

Image of FIG. 3.

Click to view

FIG. 3.

(Color online) (a) Photoluminescence cartography for 2.25 eV emission obtained on etched indentation under 3.81 eV excitation. (b) Transmission microscopy image of the indentation.

Tables

Generic image for table

Click to view

Table I.

Gaussian band parameters obtained for luminescence spectrum of pristine silica: energy position and FWHM. The intensities integrated over each band, obtained before and after etching, are also reported.

Generic image for table

Click to view

Table II.

Gaussian band parameters obtained for luminescence spectra of etched and non etched indentation: energy position, FWHM, and integrated intensities over each band.

Loading

Article metrics loading...

/content/aip/journal/apl/100/11/10.1063/1.3693393
2012-03-12
2014-04-19

Abstract

We investigate the nature of defects triggering laser damage in fused silica in subsurface fractures in nanosecond near ultraviolet regime. Mechanical, laser induced surface flaws as well as pristine silicasurface were characterized by optical microscopy and luminescence confocal microscopy before and after acidetching. In all cases, photoluminescence decreases with etching time assessing the existence of defects close to the surface. Spectral analysis of the evolution of these signals during etching allows new interpretations of the nature of precursors inducing damage. Green luminescence around 2.25 eV is seen as a potential subsurface fracture indicator leading to laser damage.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/100/11/1.3693393.html;jsessionid=7gq1c8r8lokjc.x-aip-live-06?itemId=/content/aip/journal/apl/100/11/10.1063/1.3693393&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Green luminescence in silica glass: A possible indicator of subsurface fracture
http://aip.metastore.ingenta.com/content/aip/journal/apl/100/11/10.1063/1.3693393
10.1063/1.3693393
SEARCH_EXPAND_ITEM