1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Light-induced electron paramagnetic resonance evidence of charge transfer in electrospun fibers containing conjugated polymer/fullerene and conjugated polymer/fullerene/carbon nanotube blends
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/100/11/10.1063/1.3693520
1.
1. D. Baierl, B. Fabel, P. Gabos, L. Pancheri, P. Lugli, and G. Scarpa, Org. Electron. 11, 1199 (2010).
http://dx.doi.org/10.1016/j.orgel.2010.04.023
2.
2. H.-W. Zan, W.-W. Tsai, and H.-F. Meng, Appl. Phys. Lett. 98, 053305 (2011).
http://dx.doi.org/10.1063/1.3552714
3.
3. G. Dennler, M. C. Scharber, and C. J. Brabec, Adv. Mater. 21, 1323 (2009).
http://dx.doi.org/10.1002/adma.200801283
4.
4. C. J. Brabec, S. Gowrisanker, J. J. M. Halls, D. Laird, S. Jia, and S. P. Williams, Adv. Mater. 22, 3839 (2010).
http://dx.doi.org/10.1002/adma.200903697
5.
5. J. J. M. Halls, K. Pichler, R. H. Friend, S. C. Moratti, and A. B. Holmes, Appl. Phys. Lett. 68, 3120 (1996).
http://dx.doi.org/10.1063/1.115797
6.
6. H. Y. Chen, J. H. Hou, S. Q. Zhang, Y. Y. Liang, G. W. Yang, Y. Yang, L. P. Yu, Y. Wu, and G. Li, Nature Photon. 3, 649 (2009).
http://dx.doi.org/10.1038/nphoton.2009.192
7.
7. M. A. Green, K. Emery, Y. Hishikawa, and W. Warta, Prog. Photovoltaics 19, 84 (2011).
http://dx.doi.org/10.1002/pip.1088
8.
8. A. Arinstein and E. Zussman, J. Polym. Sci., Part B: Polym. Phys. 49, 691 (2011).
http://dx.doi.org/10.1002/polb.22247
9.
9. S. A. Theron, E. Zussman, and A. L. Yarin, Polymer 45, 2017 (2004).
http://dx.doi.org/10.1016/j.polymer.2004.01.024
10.
10. F. Carpi and D. De Rossi, IEEE Trans. Inf. Technol. Biomed. 9, 295 (2005).
http://dx.doi.org/10.1109/TITB.2005.854514
11.
11. T. Kim, J. H. Im, H. S. Choi, S. J. Yang, S. W. Kim, and C. R. Park, J. Mater. Chem. 21, 14231 (2011).
http://dx.doi.org/10.1039/c1jm10396b
12.
12. H. A. Liu, D. Zepeda, J. P. Ferraris, and K. J. Balkus, Jr., ACS Appl. Mater. Interfaces 1, 1958 (2009).
http://dx.doi.org/10.1021/am900338w
13.
13. S. Sundarrajan, R. Murugan, A. S. Nair, and S. Ramakrishna, Mater. Lett. 64, 2369 (2010).
http://dx.doi.org/10.1016/j.matlet.2010.07.054
14.
14. F. S. Kim, G. Ren, and S. A. Jenekhe, Chem. Mater. 23, 682 (2011).
http://dx.doi.org/10.1021/cm102772x
15.
15. C. Bonioux, C. Itzhak, R. Avrahami, E. Zussman, J. Frey, E. A. Katz, and R. Yerushalmi-Rozen, J. Polym. Sci., Part B: Polym. Phys. 49, 1263 (2011).
http://dx.doi.org/10.1002/polb.22281
16.
16. R. Itzhak, D. Raichman, Z. Shahar, G. L. Frey, J. Frey, and R. Yerushalmi-Rozen, J. Phys. Chem. C 114, 3748 (2010).
http://dx.doi.org/10.1021/jp908309f
17.
17. M. R. Lee, R. D. Eckert, K. Forberich, G. Dennler, C. J. Brabec, and R. A. Gaudiana, Science 324, 232 (2009).
http://dx.doi.org/10.1126/science.1168539
18.
18. A. Bedeloglu, R. Koeppe, A. Demir, Y. Bozkurt, and N. S. Sariciftci, Fibers Polym. 11, 378 (2010).
http://dx.doi.org/10.1007/s12221-010-0378-0
19.
19. A. Bedeloglu, A. Demir, Y. Bozkurt, and N. S. Sariciftci, Text. Res. J. 80, 1065 (2010).
http://dx.doi.org/10.1177/0040517509352520
20.
20. W. Kylberg, F. A. de Castro, P. Chabrecek, U. Sonderegger, B. T.-T. Chu, F. Nüesch, and R. Hany, Adv.Mater. 23, 1015 (2011).
http://dx.doi.org/10.1002/adma.201003391
21.
21. Y. Galagan, J.-E. J. M. Rubingh, R. Andriessen, C.-C. Fan, P. W. M. Blom, S. C. Veenstra, and J. M. Kroon, Sol. Energy Mater. Sol. Cells 95, 1339 (2011).
http://dx.doi.org/10.1016/j.solmat.2010.08.011
22.
22. T. A. M. Ferenczi, C. Müller, D. D. C. Bradley, P. Smith, J. Nelson, and N. Stingelin, Adv. Mater. 23, 4093 (2011).
http://dx.doi.org/10.1002/adma.201102100
23.
23.See supplementary material at http://dx.doi.org/10.1063/1.3693520 for description of solutions preparation and the electrospinning parameters. [Supplementary Material]
24.
24. A. I. Shames, A. M. Panich, W. Kempiński, A. E. Alexenskii, M. V. Baidakova, A. T. Dideikin, V. Yu. Osipov, V. I. Siklitski, E. Osawa, M. Ozawa et al., J. Phys. Chem. Solids 63, 1993 (2002).
http://dx.doi.org/10.1016/S0022-3697(02)00185-3
25.
25. H. Tanaka, Y. Yokoi, N. Hasegawa, S. Kuroda, T. Iijima, T. Sato, and T. Yamamoto, J. Appl. Phys. 107, 083708 (2010).
http://dx.doi.org/10.1063/1.3380839
26.
26. J. De Ceuster, E. Goovaerts, A. Bouwen, J. C. Hummelen, and V. Dyakonov, Phys. Rev. B 64, 195206 (2001).
27.
27. J. De Ceuster, E. Goovaerts, A. Bouwen, J. C. Hummelen, and V. Dyakonov, Phys. Rev. B 64, 245210 (2001).
http://dx.doi.org/10.1103/PhysRevB.64.245210
28.
28. V. I. Krinichnyi, H.-K. Roth, S. Sensfuss, M. Schrodner, and M. Al-Ibrahim, Physica E (Amsterdam) 36, 98 (2007).
http://dx.doi.org/10.1016/j.physe.2006.08.004
29.
29. V. I. Krinichnyi, P. A. Troshin, and N. N. Denisov, Acta Mater. 56, 3982 (2008).
http://dx.doi.org/10.1016/j.actamat.2008.04.020
30.
30. V. I. Krinichnyi, E. I. Yudanova, and N. N. Denisov, J. Chem. Phys. 131, 044515 (2009).
http://dx.doi.org/10.1063/1.3193722
31.
31. K. Murata, Y. Shimoi, S. Abe, S. Kuroda, T. Noguchi, and T. Ohnishi, Chem. Phys. 227, 191 (1998).
http://dx.doi.org/10.1016/S0301-0104(97)00264-4
32.
journal-id:
http://aip.metastore.ingenta.com/content/aip/journal/apl/100/11/10.1063/1.3693520
Loading
View: Figures

Figures

Image of FIG. 1.

Click to view

FIG. 1.

(Color online) Images of electrospun P3HT fibers containing 0.1 wt. % block-copolymer, 10 wt. % PCBM, and 5 wt. % SWCNT obtained with optical microscopy (a) and SEM (b).

Image of FIG. 2.

Click to view

FIG. 2.

(Color online) EPR and LEPR spectra of two fiber samples containing P3HT only (a) and P3HT-5% PCBMcomposition (b) recorded at P MW = 200 μW and T = 80 K. Black traces 1—spectra recorded in “dark” conditions, red traces 2—spectra recorded under CW photoexcitation (light source ON), and green traces 3—spectra recorded after the light source had been switched OFF.

Image of FIG. 3.

Click to view

FIG. 3.

(Color online) EPR and LEPR spectra recorded at T = 80 K, P MW = 200 μW (solid trace), and P MW = 20 mW (dotted trace): (a) fiber sample containing P3HT only, dark signal; (b) fiber sample containing P3HT–5% PCBM composition, dark signal; and (c) fiber sample containing P3HT–5% PCBM composition, light source ON.

Image of FIG. 4.

Click to view

FIG. 4.

(Color online) Rise and decay of the peak intensity of LEPR signals recorded at T = 80 K: Black trace 1—fiber sample containing P3HT only, P MW = 200 μW; red trace 2—fiber sample containing P3HT-PCBM composition, g = 2.0004 component, P MW = 200 μW; green trace 3—fiber sample containing P3HT-PCBM composition, g = 2.0024 component, P MW = 200 μW; blue trace 4—fiber sample containing P3HT-PCBM composition, g = 2.0004 component, P MW = 20 mW.

Loading

Article metrics loading...

/content/aip/journal/apl/100/11/10.1063/1.3693520
2012-03-14
2014-04-21

Abstract

Electrospun sub-micron fibers containing conjugated polymer (poly(3-hexylthiophene), P3HT) with a fullerene derivative, phenyl-C61-butyric acid methylester (PCBM) or a mixture of PCBM and single-walled carbon nanotubes(SWCNTs) were studied by light-induced electron paramagnetic resonance spectroscopy. The results provide experimental evidence of electron transfer between PCBM and P3HT components in both fiber systems and suggest that the presence of a dispersing block-copolymer, which acts via physical adsorption onto the PCBM and SWCNT moieties, does not prevent electron transfer at the P3HT-PCBM interface. These findings suggest a research perspective towards utilization of fibers of functional nanocomposites in fiber-based organic optoelectronic and photovoltaic devices. The latter can be developed in the textile-type large area photovoltaics or individual fiber-based solar cells that will broaden energy applications from macro-power tools to micro-nanoscale power conversion devices and smart textiles.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/100/11/1.3693520.html;jsessionid=p841jg9eki8e.x-aip-live-02?itemId=/content/aip/journal/apl/100/11/10.1063/1.3693520&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Light-induced electron paramagnetic resonance evidence of charge transfer in electrospun fibers containing conjugated polymer/fullerene and conjugated polymer/fullerene/carbon nanotube blends
http://aip.metastore.ingenta.com/content/aip/journal/apl/100/11/10.1063/1.3693520
10.1063/1.3693520
SEARCH_EXPAND_ITEM