1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
oa
X-ray–optical cross-correlator for gas-phase experiments at the Linac Coherent Light Source free-electron laser
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/100/12/10.1063/1.3695163
1.
1. P. Emma, R. Akre, J. Arthur, R. Bionta, C. Bostedt, J. Bozek, A. Brachmann, P. Bucksbaum, R. Coffee, F. J. Decker et al., Nat. Photonics 4, 641 (2010).
http://dx.doi.org/10.1038/nphoton.2010.176
2.
2. A. L. Cavalieri, D. M. Fritz, S. H. Lee, P. H. Bucksbaum, D. A. Reis, J. Rudati, D. M. Mills, P. H. Fuoss, G. B. Stephenson, C. C. Kao et al., Phys. Rev. Lett. 94, 114801 (2005).
http://dx.doi.org/10.1103/PhysRevLett.94.114801
3.
3. J. M. Glownia, J. P. Cryan, J. Andreasson, A. Belkacem, N. Berrah, C. I. Blaga, C. Bostedt, J. D. Bozek, L. F. DiMauro, L. Fang et al., Opt. Express 18, 17620 (2010).
http://dx.doi.org/10.1364/OE.18.017620
4.
4. W. Ackermann, G. Asova, V. Ayvazyan, A. Azima, N. Baboi, J. Baehr, V. Balandin, B. Beutner, A. Brandt, A. Bolzmann et al., Nat. Photonics 1, 336 (2007).
http://dx.doi.org/10.1038/nphoton.2007.76
5.
5. P. Radcliffe, S. Düsterer, A. Azima, H. Redlin, J. Feldhaus, J. Dardis, K. Kavanagh, H. Luna, J. P. Gutierrez, P. Yeates et al., Appl. Phys. Lett. 90, 131108 (2007).
http://dx.doi.org/10.1063/1.2716360
6.
6. S. Cunovic, N. Müller, R. Kalms, M. Krikunova, M. Wieland, M. Drescher, Th. Maltezopoulos, U. Frühling, H. Redlin, E. Plönjes-Palm et al., Appl. Phys. Lett. 90, 121112 (2007).
http://dx.doi.org/10.1063/1.2714999
7.
7. B. Krässig, R. W. Dunford, E. P. Kanter, E. C. Landahl, S. H. Southworth, and L. Young, Appl. Phys. Lett. 94, 171113 (2009).
http://dx.doi.org/10.1063/1.3125256
8.
8. C. Gahl, A. Azima, M. Beye, M. Deppe, K. Doebrich, U. Hasslinger, F. Hennies, A. Melnikov, M. Nagasono, A. Pietzsch et al., Nat. Photonics 2, 165 (2008).
http://dx.doi.org/10.1038/nphoton.2007.298
9.
9. M. R. Bionta, H. T. Lemke, J. P. Cryan, J. M. Glownia, C. Bostedt, M. Cammarata, J.-C. Castagna, Y. Ding, D. M. Fritz, A. R. Fry et al., Opt. Express 19, 21855 (2011).
http://dx.doi.org/10.1364/OE.19.021855
10.
10. K. Sokolowski-Tinten, A. Cavalleri, and D. von der Linde, Appl. Phys. A 69, 577 (1999).
http://dx.doi.org/10.1007/s003390051478
11.
11. T. Maltezopoulos, S. Cunovic, M. Wieland, M. Beye, A. Azima, H. Redlin, M. Krikunova, R. Kalms, U. Fruehling, F. Budzyn et al., New J. Phys. 10, 033026 (2008).
http://dx.doi.org/10.1088/1367-2630/10/3/033026
12.
12. J. D. Bozek, Eur. Phys. J. 169, 129 (2009).
13.
13. M. Beye, O. Krupin, G. Hays, A. H. Reid, D. Rupp, S. de Jong, S. Lee, W.-S. Lee, Y. D. Chuang, C. Bostedt et al., Appl. Phys. Lett. 100, 121108 (2012).
http://dx.doi.org/10.1063/1.3695164
14.
14. L. Strüder, S. Eppa, D. Rolles, R. Hartmann, P. Holl, G. Lutz, H. Soltau, R. Eckart, C. Reich, K. Heinzinger et al., Nucl. Instrum. Methods Phys. Res. A 614, 483 (2010).
http://dx.doi.org/10.1016/j.nima.2009.12.053
15.
15. B. Ziaja, R. A. London, and J. Hajdu, J. Appl. Phys. 97, 064905 (2005).
http://dx.doi.org/10.1063/1.1853494
16.
16. B. Kempgens, A. Kivimaki, M. Neeb, H. M. Koppe, A. M. Bradshaw, and J. Feldhaus, J. Phys. B 29, 5389 (1996).
http://dx.doi.org/10.1088/0953-4075/29/22/016
17.
17. R. N. Coffee, L. Fang, and G. N. Gibson, Phys. Rev. A 73, 043417 (2006).
http://dx.doi.org/10.1103/PhysRevA.73.043417
18.
18. L. Young, E. P. Kanter, B. Krassig, Y. Li, A. M. March, S. T. Pratt, R. Santra, S. H. Southworth, N. Rohringer, L. F. DiMauro et al., Nature 466, 56 (2010).
http://dx.doi.org/10.1038/nature09177
19.
19. S. Düsterer, P. Radcliffe, C. Bostedt, J. Bozek, A. L. Cavalieri, R. Coffee, J. T. Costello, D. Cubaynes, L. F. DiMauro, Y. Ding et al., New J. Phys. 13, 093024 (2011).
http://dx.doi.org/10.1088/1367-2630/13/9/093024
http://aip.metastore.ingenta.com/content/aip/journal/apl/100/12/10.1063/1.3695163
Loading
/content/aip/journal/apl/100/12/10.1063/1.3695163
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apl/100/12/10.1063/1.3695163
2012-03-20
2014-11-27

Abstract

X-ray–optical pump–probe experiments at the Linac Coherent Light Source (LCLS) have so far been limited to a time resolution of 280 fs fwhm due to timing jitter between the accelerator-based free-electron laser(FEL) and optical lasers. We have implemented a single-shot cross-correlator for femtosecondx-ray and infrared pulses. A reference experiment relying only on the pulse arrival time information from the cross-correlator shows a time resolution better than 50 fs fwhm (22 fs rms) and also yields a direct measurement of the maximal x-ray pulse length. The improved time resolution enables ultrafast pump–probe experiments with x-ray pulses from LCLS and other FEL sources.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/100/12/1.3695163.html;jsessionid=1wf03tfz2z0f9.x-aip-live-02?itemId=/content/aip/journal/apl/100/12/10.1063/1.3695163&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: X-ray–optical cross-correlator for gas-phase experiments at the Linac Coherent Light Source free-electron laser
http://aip.metastore.ingenta.com/content/aip/journal/apl/100/12/10.1063/1.3695163
10.1063/1.3695163
SEARCH_EXPAND_ITEM