1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
X-ray–optical cross-correlator for gas-phase experiments at the Linac Coherent Light Source free-electron laser
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/100/12/10.1063/1.3695163
1.
1. P. Emma, R. Akre, J. Arthur, R. Bionta, C. Bostedt, J. Bozek, A. Brachmann, P. Bucksbaum, R. Coffee, F. J. Decker et al., Nat. Photonics 4, 641 (2010).
http://dx.doi.org/10.1038/nphoton.2010.176
2.
2. A. L. Cavalieri, D. M. Fritz, S. H. Lee, P. H. Bucksbaum, D. A. Reis, J. Rudati, D. M. Mills, P. H. Fuoss, G. B. Stephenson, C. C. Kao et al., Phys. Rev. Lett. 94, 114801 (2005).
http://dx.doi.org/10.1103/PhysRevLett.94.114801
3.
3. J. M. Glownia, J. P. Cryan, J. Andreasson, A. Belkacem, N. Berrah, C. I. Blaga, C. Bostedt, J. D. Bozek, L. F. DiMauro, L. Fang et al., Opt. Express 18, 17620 (2010).
http://dx.doi.org/10.1364/OE.18.017620
4.
4. W. Ackermann, G. Asova, V. Ayvazyan, A. Azima, N. Baboi, J. Baehr, V. Balandin, B. Beutner, A. Brandt, A. Bolzmann et al., Nat. Photonics 1, 336 (2007).
http://dx.doi.org/10.1038/nphoton.2007.76
5.
5. P. Radcliffe, S. Düsterer, A. Azima, H. Redlin, J. Feldhaus, J. Dardis, K. Kavanagh, H. Luna, J. P. Gutierrez, P. Yeates et al., Appl. Phys. Lett. 90, 131108 (2007).
http://dx.doi.org/10.1063/1.2716360
6.
6. S. Cunovic, N. Müller, R. Kalms, M. Krikunova, M. Wieland, M. Drescher, Th. Maltezopoulos, U. Frühling, H. Redlin, E. Plönjes-Palm et al., Appl. Phys. Lett. 90, 121112 (2007).
http://dx.doi.org/10.1063/1.2714999
7.
7. B. Krässig, R. W. Dunford, E. P. Kanter, E. C. Landahl, S. H. Southworth, and L. Young, Appl. Phys. Lett. 94, 171113 (2009).
http://dx.doi.org/10.1063/1.3125256
8.
8. C. Gahl, A. Azima, M. Beye, M. Deppe, K. Doebrich, U. Hasslinger, F. Hennies, A. Melnikov, M. Nagasono, A. Pietzsch et al., Nat. Photonics 2, 165 (2008).
http://dx.doi.org/10.1038/nphoton.2007.298
9.
9. M. R. Bionta, H. T. Lemke, J. P. Cryan, J. M. Glownia, C. Bostedt, M. Cammarata, J.-C. Castagna, Y. Ding, D. M. Fritz, A. R. Fry et al., Opt. Express 19, 21855 (2011).
http://dx.doi.org/10.1364/OE.19.021855
10.
10. K. Sokolowski-Tinten, A. Cavalleri, and D. von der Linde, Appl. Phys. A 69, 577 (1999).
http://dx.doi.org/10.1007/s003390051478
11.
11. T. Maltezopoulos, S. Cunovic, M. Wieland, M. Beye, A. Azima, H. Redlin, M. Krikunova, R. Kalms, U. Fruehling, F. Budzyn et al., New J. Phys. 10, 033026 (2008).
http://dx.doi.org/10.1088/1367-2630/10/3/033026
12.
12. J. D. Bozek, Eur. Phys. J. 169, 129 (2009).
13.
13. M. Beye, O. Krupin, G. Hays, A. H. Reid, D. Rupp, S. de Jong, S. Lee, W.-S. Lee, Y. D. Chuang, C. Bostedt et al., Appl. Phys. Lett. 100, 121108 (2012).
http://dx.doi.org/10.1063/1.3695164
14.
14. L. Strüder, S. Eppa, D. Rolles, R. Hartmann, P. Holl, G. Lutz, H. Soltau, R. Eckart, C. Reich, K. Heinzinger et al., Nucl. Instrum. Methods Phys. Res. A 614, 483 (2010).
http://dx.doi.org/10.1016/j.nima.2009.12.053
15.
15. B. Ziaja, R. A. London, and J. Hajdu, J. Appl. Phys. 97, 064905 (2005).
http://dx.doi.org/10.1063/1.1853494
16.
16. B. Kempgens, A. Kivimaki, M. Neeb, H. M. Koppe, A. M. Bradshaw, and J. Feldhaus, J. Phys. B 29, 5389 (1996).
http://dx.doi.org/10.1088/0953-4075/29/22/016
17.
17. R. N. Coffee, L. Fang, and G. N. Gibson, Phys. Rev. A 73, 043417 (2006).
http://dx.doi.org/10.1103/PhysRevA.73.043417
18.
18. L. Young, E. P. Kanter, B. Krassig, Y. Li, A. M. March, S. T. Pratt, R. Santra, S. H. Southworth, N. Rohringer, L. F. DiMauro et al., Nature 466, 56 (2010).
http://dx.doi.org/10.1038/nature09177
19.
19. S. Düsterer, P. Radcliffe, C. Bostedt, J. Bozek, A. L. Cavalieri, R. Coffee, J. T. Costello, D. Cubaynes, L. F. DiMauro, Y. Ding et al., New J. Phys. 13, 093024 (2011).
http://dx.doi.org/10.1088/1367-2630/13/9/093024
http://aip.metastore.ingenta.com/content/aip/journal/apl/100/12/10.1063/1.3695163
Loading
View: Figures

Figures

Image of FIG. 1.

Click to view

FIG. 1.

(Color online) Right: Setup of the nitrogen ionization reference experiment. The FEL and NIR beam are focussed over the entrance aperture of a tof spectrometer. Left: Cross-correlator downstream of the reference experiment. The FEL comes in normal to the Si3N4 surface with a footprint of 1.3 mm. An iris in the NIR beam is imaged onto the surface and overlapped with the x-ray spot. The reflection is imaged via a long distance microscope onto a CCD camera.

Image of FIG. 2.

Click to view

FIG. 2.

(Color online) Top: Region of interest of four single shot images recorded by the CCD camera in the cross-correlator. The onset of the x-ray induced reflectivity change moves with the varying relative arrival times. Bottom: Projections of the above images along the edge. The arrows indicate the relative pulse arrival time determined by the constant fraction type algorithm. All data are normalized with an averaged NIR-only signal R o .

Image of FIG. 3.

Click to view

FIG. 3.

(Color online) Top: and N 2+ contributions of the tof spectrum for NIR before x-ray and NIR after x-ray pulse. Bottom: signal plotted vs. the relative arrival times of the x-ray and NIR pulses obtained from the cross-correlator. The two curves are measured for different delay stage settings and the upper curve is shifted in x for better visibility. The curves have been independently fitted with the integral of a Gaussian (error function).

Image of FIG. 4.

Click to view

FIG. 4.

(Color online) (a) Correlation plot for the edge positions from two different areas on the x-ray spot. (b) Projection of (a) along the diagonal for the full measurement range (red triangles), 35 pixels (green diamonds), and 5 pixel (blue circles) corresponding to the full graph, the big box, and the small box in the left panel, respectively.

Loading

Article metrics loading...

/content/aip/journal/apl/100/12/10.1063/1.3695163
2012-03-20
2014-04-24

Abstract

X-ray–optical pump–probe experiments at the Linac Coherent Light Source (LCLS) have so far been limited to a time resolution of 280 fs fwhm due to timing jitter between the accelerator-based free-electron laser(FEL) and optical lasers. We have implemented a single-shot cross-correlator for femtosecondx-ray and infrared pulses. A reference experiment relying only on the pulse arrival time information from the cross-correlator shows a time resolution better than 50 fs fwhm (22 fs rms) and also yields a direct measurement of the maximal x-ray pulse length. The improved time resolution enables ultrafast pump–probe experiments with x-ray pulses from LCLS and other FEL sources.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/100/12/1.3695163.html;jsessionid=11v77g16nmcj2.x-aip-live-06?itemId=/content/aip/journal/apl/100/12/10.1063/1.3695163&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: X-ray–optical cross-correlator for gas-phase experiments at the Linac Coherent Light Source free-electron laser
http://aip.metastore.ingenta.com/content/aip/journal/apl/100/12/10.1063/1.3695163
10.1063/1.3695163
SEARCH_EXPAND_ITEM