1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Anisotropic charge transport and contact resistance of 6,13-bis(triisopropylsilylethynyl) pentacene field-effect transistors fabricated by a modified flow-coating method
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/100/12/10.1063/1.3695169
1.
1. J. Y. Lee, S. Roth, and Y. W. Park, Appl. Phys. Lett. 88, 252106 (2006).
http://dx.doi.org/10.1063/1.2216400
2.
2. W. Pisula, A. Menon, M. Stepputat, I. Lieberwirth, U. Kolb, A. Tracz, H. Sirringhaus, T. Pakula, and K. Mullen, Adv. Mater. 17, 684 (2005).
http://dx.doi.org/10.1002/adma.200401171
3.
3. W. H. Lee, D. H. Kim, Y. Jang, J. H. Cho, M. Hwang, Y. D. Park, Y. H. Kim, J. I. Han, and K. Cho, Appl. Phys. Lett. 90, 132106 (2007).
http://dx.doi.org/10.1063/1.2717087
4.
4. R. L. Headrick, S. Wo, F. Sansoz, and J. E. Anthony, Appl. Phys. Lett. 92, 063301 (2008).
http://dx.doi.org/10.1063/1.2839394
5.
5. H. A. Becerril, M. E. Roberts, Z. Liu, J. Locklin, and Z. Bao, Adv. Mater. 20, 2588 (2008).
http://dx.doi.org/10.1002/adma.200703120
6.
6. T. Uemura, Y. Hirose, M. Uno, K. Takimiya, and J. Takeya, Appl. Phys. Express 2, 111501 (2009).
http://dx.doi.org/10.1143/APEX.2.111501
7.
7. C. W. Sele, B. K. C. Kjellander, B. Niesen, M. J. Thornton, J. B. P. H. van der Putten, K. Myny, H. J. Wondergem, A. Moser, R. Resel, A. J. J. M. van Bereemen et al., Adv. Mater. 21, 4926 (2009).
http://dx.doi.org/10.1002/adma.200901548
8.
8. H. Minemawari, T. Yamada, H. Matsui, J. Tsutsumi, S. Haas, R. Chiba, R. Kumai, and T. Hasegawa, Nature 475, 364 (2011).
http://dx.doi.org/10.1038/nature10313
9.
9. M. J. Kim, H. W. Heo, Y. K. Suh, and C. K. Song, Org. Electron. 12, 1170 (2011).
http://dx.doi.org/10.1016/j.orgel.2011.03.034
10.
10. J. E. Anththony, J. S. Brooks, D. L. Eaton, and S. R. Parkin, J. Am. Chem. Soc. 123, 9482 (2001).
http://dx.doi.org/10.1021/ja0162459
11.
11. D. J. Gundlach, L. Zhou, J. A. Nichols, T. N. Jackson, P. V. Necliudov, and M. S. Shur, J. Appl. Phys. 100, 024509 (2006).
http://dx.doi.org/10.1063/1.2215132
12.
12. J. C. Meredith, A. P. Smith, A. Karim, and E. J. Amis, Macromolecules 33, 9747 (2000).
http://dx.doi.org/10.1021/ma001298g
13.
13. C. M. Stafford, K. E. Roskov, T. E. Epps III, and M. J. Fasolka, Rev. Sci. Instrum. 77, 023908 (2006).
http://dx.doi.org/10.1063/1.2173072
14.
14. D. M. DeLongchamp, R. J. Kline, Y. Jung, D. S. Germack, E. K. Lin, A. J. Moad, L. J. Richter, M. F. Toney, M. Heeney, and I. McCulloch, ACS Nano 3, 780 (2009).
http://dx.doi.org/10.1021/nn800574f
15.
15. S. K. Park, T. N. Jackson, J. E. Anththony, and D. A. Mourey, Appl. Phys. Lett. 91, 063514 (2007).
http://dx.doi.org/10.1063/1.2768934
16.
16. J. Chen, C. Keong, M. Shtein, D. C. Martin, and J. E. Anththony, Org. Electron. 10, 696 (2009).
http://dx.doi.org/10.1016/j.orgel.2009.03.007
17.
17. J. Chen, C. K. Tee, M. Shtein, J. Anthony, and D. C. Martin, J. Appl. Phys. 103, 114513 (2008).
http://dx.doi.org/10.1063/1.2936978
18.
18. P. L. Bullejos, J. A. J. Tejada, S. R.- Bilívar, M. J. Deen, and O. Marinov, J. Appl. Phys. 105, 084516 (2009).
http://dx.doi.org/10.1063/1.3106611
19.
19. J. A. Nichols, D. J. Gundlach, and T. N. Jackson, Appl. Phys. Lett. 83, 2366 (2003).
http://dx.doi.org/10.1063/1.1611278
20.
20. P. L. Bullejos, J. A. J. Tejada, F. M. Campos, M. J. Deen, and O. Marinov, J. Appl. Phys. 106, 094503 (2009).
http://dx.doi.org/10.1063/1.3247195
21.
21. M. Kitamura, Y. Kuzumoto, W. Kang, S. Aomori, and Y. Arakawa, Appl. Phys. Lett. 97, 033306 (2010).
http://dx.doi.org/10.1063/1.3465735
22.
22. J.-P. Hong, A.-Y. Park, S. Lee, J. Kang, N. Shin, and D. Y. Yoon, Appl. Phys. Lett. 92, 143311 (2008).
http://dx.doi.org/10.1063/1.2907691
23.
journal-id:
http://aip.metastore.ingenta.com/content/aip/journal/apl/100/12/10.1063/1.3695169
Loading
View: Figures

Figures

Image of FIG. 1.

Click to view

FIG. 1.

(Color online) Schematic illustration of our flow-coating process.

Image of FIG. 2.

Click to view

FIG. 2.

(Color online) (a) Out-of-plane XRD pattern (λCuKα = 1.54 Å), and (b) polarized IR absorption spectra of the flow-coated TIPS-pentacene film. (c-e) POM images at sample rotation angles of 28°, 0°, and −28°, respectively. The double-ended arrows labeled by “P” and “A” show the polarization axes of the polarizer and analyzer of POM, respectively. The arrows labeled by “Moving” show the flow-coating direction. (f) Preferential unit cell orientations.

Image of FIG. 3.

Click to view

FIG. 3.

(Color online) (a) Output characteristics of the parallel OFET with L = 150 μm. (b) Transfer characteristics of the parallel (//) and perpendicular (⊥) OFETs with L = 150 μm.

Image of FIG. 4.

Click to view

FIG. 4.

(Color online) (a) Channel length dependence of RtotW at Vds  = −0.6 V of the parallel (//) and perpendicular (⊥) OFETs. The solid straight lines were determined by the least-squares method using the data points in the short channel length range. (b) RcW for different Vgs .

Image of FIG. 5.

Click to view

FIG. 5.

(Color online) (a) Separation of BG/BC-type OFET channel into contact region [0, xc ] and intrinsic channel region [xc , L]. Vc and V′ds are the voltage drops in the contact and intrinsic channel regions, respectively. (b) Id -Vc curves at Vgs  = −4 V of the parallel (//) and perpendicular (⊥) OFETs with different channel lengths, L ≤ 200 and L ≤ 150 μm, respectively.

Loading

Article metrics loading...

/content/aip/journal/apl/100/12/10.1063/1.3695169
2012-03-19
2014-04-24

Abstract

Using a modified flow-coating method, bottom-gate/bottom-contact type organic field-effect transistors(OFETs) with a highly oriented active layer of 6,13-bis(triisopropylsilylethynyl) pentacene (TIPS-pentacene) were fabricated. The flow-coated TIPS-pentacene films were fairly uniform and consisted of arrays of needle-shaped crystals along the flow-coating direction. The uniformity allowed us to determine the contact resistance by a transfer line method. The usefulness of the modified flow-coating method for fabricating high performance OFETs has been demonstrated, and we found that not only the field-effect mobility but also the contact resistance significantly depends on the channel current direction with respect to the flow-coating direction.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/100/12/1.3695169.html;jsessionid=1x2ayyawi9k81.x-aip-live-06?itemId=/content/aip/journal/apl/100/12/10.1063/1.3695169&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Anisotropic charge transport and contact resistance of 6,13-bis(triisopropylsilylethynyl) pentacene field-effect transistors fabricated by a modified flow-coating method
http://aip.metastore.ingenta.com/content/aip/journal/apl/100/12/10.1063/1.3695169
10.1063/1.3695169
SEARCH_EXPAND_ITEM