1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Evidence for different origins of the magnetic field effect on current and electroluminescence in organic light-emitting diodes
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/100/12/10.1063/1.3696051
1.
1. J. Kalinowski, M. Cocchi, D. Virgili, P. Di Marco, and V. Fattori, Chem. Phys. Lett. 380, 710 (2003).
http://dx.doi.org/10.1016/j.cplett.2003.09.086
2.
2. T. L. Francis, Ö. Mermer, G. Veeraraghavan, and M. Wohlgenannt, New J. Phys. 6, 185 (2004).
http://dx.doi.org/10.1088/1367-2630/6/1/185
3.
3. Ö. Mermer, G. Veeraraghavan, T. L. Francis, and M. Wohlgenannt, Solid State Commun. 134, 631 (2005).
http://dx.doi.org/10.1016/j.ssc.2005.02.044
4.
4. Ö. Mermer, G. Veeraraghavan, T. L. Francis, Y. Sheng, D. T. Nguyen, M. Wohlgenannt, A. Köhler, M. K. Al-Suti, and M. S. Khan, Phys. Rev. B 72, 205202 (2005).
http://dx.doi.org/10.1103/PhysRevB.72.205202
5.
5. U. Niedermeier, M. Vieth, R. Pätzold, W. Sarfert, and H. von Seggern, Appl. Phys. Lett. 92, 193309 (2008).
http://dx.doi.org/10.1063/1.2924765
6.
6. U. Niedermeier, Ph.D. dissertation (Technische Universität Darmstadt, 2010).
7.
7. Y. Sheng, T. D. Nguyen, G. Veeraraghavan, Ö. Mermer, M. Wohlgenannt, S. Qiu, and U. Scherf, Phys. Rev. B 74, 045213 (2006).
http://dx.doi.org/10.1103/PhysRevB.74.045213
8.
8. T. D. Schmidt, A. Buchschuster, M. Holm, S. Nowy, J. A. Weber, and W. Brütting, Synth. Met. 161, 637 (2011).
http://dx.doi.org/10.1016/j.synthmet.2010.12.011
9.
9. P. Desai, P. Shakya, T. Kreouzis, W. P. Gillin, N. A. Morley, and M. R. J. Gibbs, Phys. Rev. B 75, 094423 (2007).
http://dx.doi.org/10.1103/PhysRevB.75.094423
10.
10. W. Brütting, S. Berleb, and A. G. Mückl, Org. Electron. 2, 1 (2001).
http://dx.doi.org/10.1016/S1566-1199(01)00009-X
11.
11. T. M. Brown, J. S. Kim, R. H. Friend, F. Cacialli, R. Daik, and W. J. Feasr, Appl. Phys. Lett. 75, 1679 (1999).
http://dx.doi.org/10.1063/1.124789
12.
12. Y. Kawabe and J. Abe, Appl. Phys. Lett. 81, 493 (2002).
http://dx.doi.org/10.1063/1.1494105
13.
13. Z. Zhi-lin, J. Xue-yin, Z. Wen-qing, Z. Bu-xin, and X. Shao-hong, J. Phys. D: Appl. Phys. 34, 3083 (2001).
http://dx.doi.org/10.1088/0022-3727/34/20/313
14.
14. B. P. Rand, J. Xue, F. Yang, and S. R. Forrest, Appl. Phys. Lett. 87, 233508 (2005).
http://dx.doi.org/10.1063/1.2140075
15.
15. G. He, M. Pfeiffer, K. Leo, M. Hofmann, J. Birnstock, R. Pudzich, and J. Salbeck, Appl. Phys. Lett. 85, 3911 (2004).
http://dx.doi.org/10.1063/1.1812378
16.
16. Y. Kijima, N. Asai, and S. Tamura, Jpn. J. Appl. Phys. 38, 5274 (1999).
http://dx.doi.org/10.1143/JJAP.38.5274
17.
17. F. L. Bloom, W. Wagemans, M. Kemerink, and B. Koopmans, Appl. Phys. Lett. 93, 263302 (2008).
http://dx.doi.org/10.1063/1.3059555
18.
18. W. Wagemans, Ph.D. dissertation (Eindhoven University of Technology, 2010).
19.
19. F. J. Wang, H. Bässler, and Z. Valy Vardeny, Phys. Rev. Lett. 101, 236805 (2008).
http://dx.doi.org/10.1103/PhysRevLett.101.236805
20.
20. U. Niedermeier, S. A. Bagnich, C. Melzer, W. Sarfert, and H. von Seggern, Synth. Met. 160, 251 (2010).
http://dx.doi.org/10.1016/j.synthmet.2009.06.012
21.
21. P. A. Bobbert, T. D. Nguyen, F. W. A. van Oost, B. Koopmans, and M. Wohlgenannt, Phys. Rev. Lett. 99, 216801 (2007).
http://dx.doi.org/10.1103/PhysRevLett.99.216801
22.
22. S. A. Bagnich, U. Niedermeier, C. Melzer, W. Sarfert, and H. von Seggern, J. Appl. Phys. 106, 113702 (2009).
http://dx.doi.org/10.1063/1.3260249
23.
journal-id:
http://aip.metastore.ingenta.com/content/aip/journal/apl/100/12/10.1063/1.3696051
Loading
/content/aip/journal/apl/100/12/10.1063/1.3696051
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apl/100/12/10.1063/1.3696051
2012-03-20
2014-09-02

Abstract

An external magnetic field can change the current through an organic light-emitting diode and the luminance it emits. Existing models predict that both phenomena have the same behaviour and, therefore, a common origin; however, there are indications that they are not completely linked. As a direct proof, we measured the magnetic fieldeffect in multilayer organic light-emitting diodes using Alq3 as emission layer. After successively adding blocking layers, we found a decrease of the magnetic fieldeffect on the current, whereas the effect on the luminance remained at the same level. Thus, both effects can be separated from each other.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/100/12/1.3696051.html;jsessionid=9ecmb3ndq4gco.x-aip-live-06?itemId=/content/aip/journal/apl/100/12/10.1063/1.3696051&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Evidence for different origins of the magnetic field effect on current and electroluminescence in organic light-emitting diodes
http://aip.metastore.ingenta.com/content/aip/journal/apl/100/12/10.1063/1.3696051
10.1063/1.3696051
SEARCH_EXPAND_ITEM