1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Efficiency enhancement in dye sensitized solar cells through co-sensitization of TiO2 nanocrystalline electrodes
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/100/13/10.1063/1.3697987
1.
1. B. O’Regan and M. Grätzel, Nature 353, 737 (1991).
http://dx.doi.org/10.1038/353737a0
2.
2. J. N. Clifford, E. Martínez-Ferrero, A. Viterisi, and E. Palomares, Chem. Soc. Rev. 40, 1635 (2011).
http://dx.doi.org/10.1039/b920664g
3.
3. L. Li, Y. Hao, X. Yang, J. Zhao, H. Tian, C. Teng, A. Hagfeldt, and L. Sun, ChemSusChem 4, 609 (2011).
http://dx.doi.org/10.1002/cssc.201100002
4.
4. Z.-S. Wang, T. Yamaguchi, H. Sugihara, and H. Arakawa, Langmuir 21, 4272 (2005).
http://dx.doi.org/10.1021/la050134w
5.
5. K. Sayama, S. Tsukagoshi, T. Mori, K. Hara, Y. Ohga, A. Shinpou, Y. Abe, S. Suga, and H. Arakawa, Sol. Energy Mater. Sol. Cells 80, 47 (2003).
http://dx.doi.org/10.1016/S0927-0248(03)00113-2
6.
6. A. Ehret, L. Stuhl, and M. T. Spitler, J. Phys. Chem. B 105, 9960 (2001).
http://dx.doi.org/10.1021/jp011952+
7.
7. F. Inakazu, Y. Noma, Y. Ogomi, and S. Hayase, Appl. Phys. Lett. 93, 093304 (2008).
http://dx.doi.org/10.1063/1.2976677
8.
8. E. Palomares, J. N. Clifford, S. A. Haque, T. Lutz, and J. R. Durrant, Chem. Commun. 2002, 1464.
9.
9. J. Krüger, R. Plass, M. Grätzel, and H.-J. Matthieu, Appl. Phys. Lett. 81, 367 (2002).
http://dx.doi.org/10.1063/1.1490394
10.
10. J. R. S. Brownson, M. I. Tejedor-Tejedor, and M. A. Anderson, J. Phys. Chem. B 110, 12494 (2006).
http://dx.doi.org/10.1021/jp0614547
11.
11.See supplementary material at http://dx.doi.org/10.1063/1.3697987 for FTIR analysis and dye loading calculation. [Supplementary Material]
12.
12. C. Sima, C. Grigoriu, and S. Antohe, Thin Solid Films 519, 595 (2010).
http://dx.doi.org/10.1016/j.tsf.2010.07.002
13.
13. K. Goto, T. Kawashima, and N. Tanabe, Sol. Energy Mater. Sol. Cells 90, 3251 (2006).
http://dx.doi.org/10.1016/j.solmat.2006.06.048
14.
14. Z. S. Wang, T. Yamaguchi, H. Sugihara, and H. Arakawa, Langmuir 21, 4272 (2005).
http://dx.doi.org/10.1021/la050134w
15.
15. P. J. Cameron and L. M. Peter, J. Phys. Chem. B 109, 7392 (2005).
http://dx.doi.org/10.1021/jp0407270
16.
16. L. Han, N. Koide, Y. Chiba, and T. Mitate, Appl. Phys. Lett. 84, 2433 (2004).
http://dx.doi.org/10.1063/1.1690495
17.
17.HOMO was estimated from the onset oxidation potential of the dye from cyclic voltammetery measurements using the relationship: EHOMO = −e(4.5 + Eonset) (eV) and LUMO was determined as: ELUMO = EHOMO − E0-0, the E0-0 transition energy was determined from the onset absorption energy.
18.
18. P. Wang, S. M. Zakeeruddin, J.-E. Moser, and M. Gratzel, J. Phys. Chem. B 107, 13280 (2003).
http://dx.doi.org/10.1021/jp0355399
19.
journal-id:
http://aip.metastore.ingenta.com/content/aip/journal/apl/100/13/10.1063/1.3697987
Loading

Figures

Image of FIG. 1.

Click to view

FIG. 1.

Structures of RhCL dye (a) and N3 dye (b). (c) Schematic representation of the binding of RhCL and N3 dyes on the formic acid treated TiO2 surface. Dashed lines represent the hydrogen bonding between OH groups and N3 dye.

Image of FIG. 2.

Click to view

FIG. 2.

Typical J-V measurements of the DSSCs fabricated using (a) two dyes with different dipping interval time (td) into N3 dye solution and (b) N3 dye, RhCL dye and N3 + RhCL dyes. Open and closed symbols represent dark and photo (under AM1.5G; intensity 100 mW/cm2) currents, respectively.

Image of FIG. 3.

Click to view

FIG. 3.

(a) UV-vis and IPCE of 4 µm TiO2 film loaded with N3 dye, RhCL dye, and N3 + RhCL dyes. The bare TiO2 film was used as a reference for the UV-vis spectrum scan. (b) FTIR spectra of untreated and formic acid treated TiO2 surface.

Tables

Generic image for table

Click to view

Table I.

Detailed photovoltaic parameters of the devices based on RhCL, N3+RhCL dyes measured under AM 1.5 full sunlight irradiation intensity.

Generic image for table

Click to view

Table II.

Optical properties and energy levels of the dyes used in the present work.

Loading

Article metrics loading...

/content/aip/journal/apl/100/13/10.1063/1.3697987
2012-03-27
2014-04-17

Abstract

We have demonstrated that co-sensitization of TiO2electrode with an inexpensive rhodamine 19 perchlorate laser dye along with N3 dye not only enhances the incident-photon-to-current conversion efficiency but also reduces dark current. Consequently, the devices yield an average power efficiency of 4.7% as against 2.3% and 0.6% obtained for N3 and rhodamine 19 perchlorate dye based devices, respectively. The improvement in efficiency is attributed to the enhanced dye absorption on TiO2electrode as well as reduced dye aggregation that resulted from the usage of two dyes on different anchoring sites of single TiO2electrode.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/100/13/1.3697987.html;jsessionid=uln6fnso9y3p.x-aip-live-03?itemId=/content/aip/journal/apl/100/13/10.1063/1.3697987&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Efficiency enhancement in dye sensitized solar cells through co-sensitization of TiO2 nanocrystalline electrodes
http://aip.metastore.ingenta.com/content/aip/journal/apl/100/13/10.1063/1.3697987
10.1063/1.3697987
SEARCH_EXPAND_ITEM