1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
f
Very low bias stress in n-type organic single-crystal transistors
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/100/13/10.1063/1.3698341
1.
1. R. J. Chesterfield, C. R. Newman, T. M. Pappenfus, P. Ewbanks, M. Haukaas, K. R. Mann, L. L. Miller, and C. D. Frisbie, Adv. Mater. 15, 1278 (2003);
http://dx.doi.org/10.1002/adma.200305200
1. J. E. Anthony, A. Facchetti, M. Heeney, S. R. Marder, X. Zhan, Adv. Mater. 22, 3876 (2010);
http://dx.doi.org/10.1002/adma.200903628
1. X. Zhao and X. Zhan, Chem. Soc. Rev. 40, 3728 (2011).
http://dx.doi.org/10.1039/c0cs00194e
2.
2. M. Mas-Torrent and C. Rovira, Chem. Soc. Rev. 37, 827 (2008);
http://dx.doi.org/10.1039/b614393h
2. H. Klauk, Chem. Soc. Rev. 39, 2643 (2010).
http://dx.doi.org/10.1039/b909902f
3.
3. B. A. Jones, A. Facchetti, M. R. Wasielewski, and T. J. Marks, J. Am. Chem. Soc. 129, 15259 (2007).
http://dx.doi.org/10.1021/ja075242e
4.
4. B. A. Jones, M. J. Ahrens, M. H. Yoon, A. Facchetti, T. J. Marks, and M. R. Wasielewski, Angew. Chem. Int. Ed. 43, 6363 (2004);
http://dx.doi.org/10.1002/anie.v43:46
4. B. A. Jones, A. Facchetti, M. R. Wasielewski, and T. J. Marks, Adv. Funct. Mater. 18, 1329 (2008).
http://dx.doi.org/10.1002/adfm.200701045
5.
5. H. Yan, Z. Chen, Y. Zheng, C. Newman, J. R. Quinn, F. Dotz, M. Kastler, and A. Facchetti, Nature 457, 680 (2009);
http://dx.doi.org/10.1038/nature07727
5. J. Soeda, T. Uemura, Y. Mizuno, A. Nakao, Y. Nakazawa, A. Facchetti, and J. Takeya, Adv. Mater. 23, 3681 (2011).
http://dx.doi.org/10.1002/adma.201101467
6.
6. R. W. I. de Boer, M. E. Gershenson, A. F. Morpurgo, and V. Podzorov, Phys. Status Solidi A 201, 1302 (2004);
http://dx.doi.org/10.1002/pssa.v201:6
6. M. E. Gershenson, V. Podzorov, and A. F. Morpurgo, Rev. Mod. Phys.78, 973 (2006);
http://dx.doi.org/10.1103/RevModPhys.78.973
6. T. Hasegawa and J. Takeya, Sci. Technol. Adv. Mater. 10, 024314 (2009).
http://dx.doi.org/10.1088/1468-6996/10/2/024314
7.
7. A. S. Molinari, H. Alves, Z. Chen, A. Facchetti, and A. F. Morpurgo, J. Am. Chem. Soc. 131, 2462 (2009).
http://dx.doi.org/10.1021/ja809848y
8.
8. N. A. Minder, S. Ono, Z. Chen, A. Facchetti, and A. F. Morpurgo, Adv. Mater. 24, 503 (2012).
http://dx.doi.org/10.1002/adma.201103960
9.
9. W. A. Schoonveld, J. B. Oosting, J. Vrijmoeth, and T. M. Klapwijk, Synth. Met. 101, 608 (1999);
http://dx.doi.org/10.1016/S0379-6779(98)01249-1
9. M. Matters, D. M. de Leeuw, P. T. Herwig, and A. R. Brown, Synth. Met. 102, 998 (1999);
http://dx.doi.org/10.1016/S0379-6779(98)01162-X
9. A. Salleo and R. A. Street, J. Appl. Phys. 94, 471 (2003);
http://dx.doi.org/10.1063/1.1581352
9. H. L. Gomes, P. Stallinga, F. Dinelli, M. Murgia, F. Biscarini, D. M. de Leeuw, T. Muck, J. Geurts, L. W. Molenkamp, and V. Wagner, Appl. Phys. Lett. 84, 3184 (2004);
http://dx.doi.org/10.1063/1.1713035
9. H. L. Gomes, P. Stallinga, F. Dinelli, M. Murgia, F. Biscarini, D. M. de Leeuw, M. Muccini, and K. Müllen, Polym. Adv. Technol. 16, 227 (2005);
http://dx.doi.org/10.1002/pat.v16:2/3
9. H. Sirringhaus, Adv. Mater. 21, 3859 (2009);
http://dx.doi.org/10.1002/adma.200901136
9. K. K. Ryu, I. Nausieda, D. D. He, A. I. Akinwande, V. Bulovic, and C. G. Sodini, IEEE Trans. Electron. Devices 57, 1003 (2010).
http://dx.doi.org/10.1109/TED.2010.2044282
10.
10. S. G. J. Mathijssen, M. Colle, H. Gomes, E. C. P. Smits, B. de Boer, I. McCulloch, P. A. Bobbert, and D. de Leeuw, Adv. Mater. 19, 2785 (2007);
http://dx.doi.org/10.1002/adma.200602798
10. A. Sharma, S. G. J. Mathijssen, E. C. Smiths, M. Kemerink, D. M. De Leeuw, and P. A. Bobbert, Phys. Rev. B 82, 075322 (2010).
http://dx.doi.org/10.1103/PhysRevB.82.075322
11.
11. B. Lee, A. Wan, D. Mastogiovanni, J. E. Anthony, E. Garfunkel, and V. Podzorov, Phys. Rev. B 82, 085302 (2010).
http://dx.doi.org/10.1103/PhysRevB.82.085302
12.
12. Y. Fujisaki, Y. Nakajima, D. Kumaki, T. Yamamoto, S. Tokito, T. Kono, J. Nishida, and Y. Yamashita, Appl. Phys. Lett. 97, 133303 (2010).
http://dx.doi.org/10.1063/1.3491815
13.
13. M. Barra, F. V. Di Girolamo, F. Chiarella, M. Salluzzo, Z. Chen, A. Facchetti, L. Anderson, and A. Cassinese, J. Phys. Chem. C 114, 20387 (2010);
http://dx.doi.org/10.1021/jp103555x
13. T. N. Ng, S. Sambandan, R. Lujan, A. C. Arias, C. R. Newman, H. Yan, and A. Facchetti, Appl. Phys. Lett. 94, 233307 (2009).
http://dx.doi.org/10.1063/1.3153510
14.
14. F. Colléaux, J. M. Ball, P. H. Wöbkenberg, P. J. Hotchkiss, S. R. Marder, and T. D. Anthopuolos, Phys. Chem. Chem. Phys. 13, 14387 (2011).
http://dx.doi.org/10.1039/c1cp20769e
15.
15. L. L. Chua, J. Zaumseil, J. F. Chang, E. Ou, P. Ho, H. Sirringhaus, and R. H. Friend, Nature 434, 194 (2005).
http://dx.doi.org/10.1038/nature03376
16.
16. W. L. Kalb, T. Mathis, S. Haas, A. F. Stassen, and B. Batlogg, Appl. Phys. Lett. 90, 092104 (2007).
http://dx.doi.org/10.1063/1.2709894
17.
17. R. Häusermann and B. Batlogg, Appl. Phys. Lett. 99, 083303 (2011).
http://dx.doi.org/10.1063/1.3628297
18.
18. F. V. Di Girolamo, C. Aruta, M. Barra, P. D’Angelo, and A. Cassinese, Appl. Phys. A 96, 481 (2009).
http://dx.doi.org/10.1007/s00339-009-5250-y
19.
19.The best fits were calculated using the MINUIT code (Ref. 18) by minimizing χ2 on logarithmic sub-sets (nine points per decade: t = 0.1, 0.2, 0.3 s, …, 1, 2, 3 s, …, 10, 20, 30 s, …) of the experimental data.
20.
20. U. Zschieschang, R. T. Weitz, K. Kern, and H. Klauk, Appl. Phys. A 95, 139 (2009).
http://dx.doi.org/10.1007/s00339-008-5019-8
21.
21. D. M. de Leeuw, M. M. J. Simenon, A. R. Brown, and R. E. F. Einerhand, Synth. Met. 83, 53 (1997).
http://dx.doi.org/10.1016/S0379-6779(97)80097-5
http://aip.metastore.ingenta.com/content/aip/journal/apl/100/13/10.1063/1.3698341
Loading
/content/aip/journal/apl/100/13/10.1063/1.3698341
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apl/100/13/10.1063/1.3698341
2012-03-26
2014-11-23

Abstract

Bias stress effects in n-channel organic field-effect transistors(OFETs) are investigated using N,N′-bis(n-alkyl)-(1,7 and 1,6)-dicyanoperylene-3,4:9,10-bis(dicarboximide)s (PDIF-CN2) single-crystaldevices with Cytop gate dielectric, both under vacuum and in ambient. We find that the amount of bias stress is very small as compared to all (p-channel) OFETs reported in the literature. Stressing the PDIF-CN2devices by applying 80 V to the gate for up to a week results in a decrease of the source drain current of only ∼1% under vacuum and ∼10% in air. This remarkable stability of the devices leads to characteristic time constants τ, extracted by fitting the data with a stretched exponential—that are τ ∼ 2 × 109 s in air and τ ∼ 5 × 109 s in vacuum—approximately two orders of magnitude larger than the best values reported previously for p-channel OFETs.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/100/13/1.3698341.html;jsessionid=2nll87nbb7h7q.x-aip-live-02?itemId=/content/aip/journal/apl/100/13/10.1063/1.3698341&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Very low bias stress in n-type organic single-crystal transistors
http://aip.metastore.ingenta.com/content/aip/journal/apl/100/13/10.1063/1.3698341
10.1063/1.3698341
SEARCH_EXPAND_ITEM