1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
f
Dependence of charge carrier injection on the interface energy barrier in short-channel polymeric field effect transistors
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/100/14/10.1063/1.3701271
1.
1. I. McCulloch, M. Heeney, C. Bailey, K. Genevicius, I. MacDonald, M. Shkunov, D. Sparrowe, S. Tierney, R. Wagner, W. Zhang, L. L. Chabinyc, R. J. Kline, M. D. McGehee, and M. F. Toney, Nature Mater. 5, 328 (2006).
http://dx.doi.org/10.1038/nmat1612
2.
2. L. Burgi, T. J. Richards, R. H. Friend, and H. Sirringhaus, J. Appl. Phys. 94, 6129 (2003).
http://dx.doi.org/10.1063/1.1613369
3.
3. K. Seshadri and D. Frisbie, Appl. Phys. Lett. 78, 993 (2001).
http://dx.doi.org/10.1063/1.1345805
4.
4. N. Stutzmann, R. H. Friend, and H. Sirringhaus, Science 299, 1881 (2003).
http://dx.doi.org/10.1126/science.1081279
5.
5. B. S. Ong, Y. Wu, P. Liu, and S. Gardner, J. Am. Chem. Soc. 126, 3378 (2004).
http://dx.doi.org/10.1021/ja039772w
6.
6. L. Chua, J. Zamseil, J. Chang, E. Ou, P. Ho, H. Sirringhaus, and R. H. Friend, Nature 434, 194 (2005).
http://dx.doi.org/10.1038/nature03376
7.
7. Z. G. Zhang, Z. Z. Zhang, and P. P. Freitas, J. Appl. Phys. 93, 8552 (2003).
http://dx.doi.org/10.1063/1.1558660
8.
8. R. D. McCullough, S. Tristam-Nagle, S. P. Williams, R. D. Lowe, and M. Jayaraman, J. Am. Chem. Soc. 115, 4910 (1993).
http://dx.doi.org/10.1021/ja00064a070
9.
9. A. Dodabalapur, Z. Bao, A. Makhija, J. G. Laquindanum, V. R. Raju, and Y. Feng, Appl. Phys. Lett. 73, 142 (1998).
http://dx.doi.org/10.1063/1.121736
10.
10. N. Nakanishi, K. Tada, M. Onoda, and H. Nakayama, Appl. Phys. Lett. 75, 226 (1999).
http://dx.doi.org/10.1063/1.124330
11.
11. H. Klauk, G. Schmid, W. Radlik, W. Weber, L. Zhou, C. D. Sheraw, J. A. Nichols, and T. N. Jackson, Solid-State Electron. 47, 297 (2003).
http://dx.doi.org/10.1016/S0038-1101(02)00210-1
12.
12. A. Salleo, T. W. Chen, A. R. Volkel, Y. Wu, P. Liu, B. S. Ong, and R. A. Street, Phys. Rev. B 70, 115311 (2004).
http://dx.doi.org/10.1103/PhysRevB.70.115311
13.
13. L. Smardz, U. Kobler, and W. Zinn, J. Appl. Phys. 71, 5199 (1992).
http://dx.doi.org/10.1063/1.351378
14.
14. L. Giordano, F. Cinquini, and G. Pacchioni, Phys. Rev. B 73, 045414 (2005).
http://dx.doi.org/10.1103/PhysRevB.73.045414
15.
15. M. Salou, B. Lescop, S. Rioual, A. Lebon, J. Ben Youssef, and B. Rouvellou, Surf. Sci. 602, 2901 (2008).
http://dx.doi.org/10.1016/j.susc.2008.07.012
16.
16. N. Koch, A. Kahn, J. Ghijsen, J.-J. Pireaux, J. Schwartz, R. L. Johnson, and A. Elschner, Appl. Phys. Lett. 82, 70 (2003).
http://dx.doi.org/10.1063/1.1532102
17.
17. O. Tal, W. Gao, C. K. Chan, A. Kahn, and Y. Rosenwaks, Appl. Phys. Lett. 85, 4148 (2004).
http://dx.doi.org/10.1063/1.1811805
18.
18. T. Li, P. Ruden, I. H. Campbell, and D. L. Smith, J. Appl. Phys. 93, 4017 (2003).
http://dx.doi.org/10.1063/1.1558998
19.
19. K. A. Singh, T. Young, R. D. McCullough, T. Kowalewski, and L. M. Porter, Adv. Funct. Mater. 20, 2216 (2010).
http://dx.doi.org/10.1002/adfm.201000346
20.
20. N. Koch, A. Elschner, J. Schwartz, and A. Kahn, Appl. Phys. Lett. 82, 2281 (2003).
http://dx.doi.org/10.1063/1.1565506
21.
21. M. D. Austin and S. Y. Chou, Appl. Phys. Lett. 81, 4431 (2002).
http://dx.doi.org/10.1063/1.1526457
22.
22. T. Hirose, T. Nagase, T. Kobayashi, R. Ueda, A. Otomo, and H. Naito, Appl. Phys. Lett. 97, 83301 (2010).
http://dx.doi.org/10.1063/1.3480549
http://aip.metastore.ingenta.com/content/aip/journal/apl/100/14/10.1063/1.3701271
Loading
/content/aip/journal/apl/100/14/10.1063/1.3701271
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apl/100/14/10.1063/1.3701271
2012-04-03
2014-11-26

Abstract

The influence of contact materials on the electrical characteristics of field-effect transistors made from poly(3-hexylthiophene) with short-channel lengths of 80 nm is investigated. The thermally activated output current indicates the presence of a potential barrier at the electrode/organic contact. The barrier is not related to surface oxide and results in non-linear junction characteristics with activation voltage that can be only partially controlled via the work function of the contact metal. A Schottky contact at the metal/polymer interface arises from the band offset of the two materials and from interfacial dipole layers. Transistor operation with on/off ratio over 103 is achieved with five different electrode materials.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/100/14/1.3701271.html;jsessionid=40d01ct2jr2p.x-aip-live-03?itemId=/content/aip/journal/apl/100/14/10.1063/1.3701271&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Dependence of charge carrier injection on the interface energy barrier in short-channel polymeric field effect transistors
http://aip.metastore.ingenta.com/content/aip/journal/apl/100/14/10.1063/1.3701271
10.1063/1.3701271
SEARCH_EXPAND_ITEM