Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. A. K. Geim and K. S. Novoselov, Nature Mater. 6, 183 (2007).
2. H. Zhang, Q. Bao, D. Tang, L. Zhao, and K. Loh, Appl. Phys. Lett. 95, 141103 (2009).
3. T. Ihn, J. Güttinger, F. Molitor, S. Schnez, E. Schurtenberger, A. Jacobsen, S. Hellmüller, T. Frey, S. Dröscher, C. Stampfer, and K. Ensslin, Mater. Today 13, 4450 (2010).
4. F. Xia, T. Mueller, Y. Lin, A. Valdes-Garcia, and P. Avouris, Nat. Nanotechnol. 4, 839843 (2009).
5. F. Schedin, A. K. Geim, S. V. Morozov, E. W. Hill, P. Blake, M. I. Katsnelson, and K. S. Novoselov, Nature Mater. 6, 652655 (2007).
6. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Science 306, 666 (2004).
7. S. Park and R. Ruoff, Nature Nanotechnol. 4, 217224 (2009).
8. K. V. Emtsev, A. Bostwick, K. Horn, J. Jobst, G. L. Kellogg, L. Ley, J. L. McChesney, T. Ohta, S. A. Reshanov, J. Röhrl, E. Rotenberg, A. K. Schmid, D. Waldmann, H. B. Weber, and T. Seyller, Nature Mater. 8, 203207 (2009).
9. K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J.-H. Ahn, P. Kim, J.-Y. Choi, and B. H. Hong, Nature 457, 706710 (2009).
10. H. O. Jeschke, M. E. Garcia, and K. H. Bennemann, Phys. Rev. Lett. 87, 015003 (2001).
11. Y. Miyamoto, H. Zhang, and D. Tománek, Phys. Rev. Lett. 104, 208302 (2010).
12. M. Qian, Y. S. Zhou, Y. Gao, J. B. Park, T. Feng, S. M. Huang, Z. Sun, L. Jiang, and Y. F. Lu, Appl. Phys. Lett. 98, 173108 (2011).
13. S. I. Kudryashov, J. Appl. Phys. 100, 036103 (2006).
14. C. R. Dean, A. F. Young, I. Meric, C. Lee, L. Wang, S. Sorgenfrei, K. Watanabe, T. Taniguchi, P. Kim, K. L. Shepard, and J. Hone, Nat. Nanotechnol. 5, 722726 (2010).
15. W. Gannett, W. Regan, K. Watanabe, T. Taniguchi, M. F. Crommie, and A. Zettl, Appl. Phys. Lett. 98, 242105 (2011).
16. M. Lenner, A. Kaplan, C. Huchon, and R. E. Palmer, Phys. Rev. B 79, 184105 (2009).
17. H. Jeschke and M. Garcia, Appl. Surf. Sci. 197, 107113 (2002).
18. F. Carbone, P. Baum, P. Rudolf, and A. H. Zewail, Phys. Rev. Lett. 100, 035501 (2008).
19. F. Carbone, G. Aubock, A. Cannizzo, F. Van Mourik, R. R. Nair, A. K. Geim, K. S. Novoselov, and M. Chergui, Chem. Phys. Lett. 504, 3740 (2011).

Data & Media loading...


Article metrics loading...



We present a laser induced ablation process to fabricate ultrathin graphitic flakes. By varying the fluence of the ablating pulsed fs-laser radiation, we identify distinct values for "thermal" evaporation and so-called "non-thermal" ablation of graphitic flakes. The presence of the non-thermal ablation is a direct consequence of the strong asymmetry of the bonding strength in normal and in-plane direction in layered materials, such as graphite. The experimentally extracted non-thermal ablation threshold for graphite of 250 mJ/cm2 agrees well with theoretical predictions. Finally, we deposited ultrathin graphitic flakes of 50 μm2 in size, which we characterize by Raman spectroscopy and scanning force microscopy.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd