1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
Laser induced non-thermal deposition of ultrathin graphite
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/100/15/10.1063/1.3703599
1.
1. A. K. Geim and K. S. Novoselov, Nature Mater. 6, 183 (2007).
http://dx.doi.org/10.1038/nmat1849
2.
2. H. Zhang, Q. Bao, D. Tang, L. Zhao, and K. Loh, Appl. Phys. Lett. 95, 141103 (2009).
http://dx.doi.org/10.1063/1.3244206
3.
3. T. Ihn, J. Güttinger, F. Molitor, S. Schnez, E. Schurtenberger, A. Jacobsen, S. Hellmüller, T. Frey, S. Dröscher, C. Stampfer, and K. Ensslin, Mater. Today 13, 4450 (2010).
http://dx.doi.org/10.1016/S1369-7021(10)70033-X
4.
4. F. Xia, T. Mueller, Y. Lin, A. Valdes-Garcia, and P. Avouris, Nat. Nanotechnol. 4, 839843 (2009).
http://dx.doi.org/10.1038/nnano.2009.292
5.
5. F. Schedin, A. K. Geim, S. V. Morozov, E. W. Hill, P. Blake, M. I. Katsnelson, and K. S. Novoselov, Nature Mater. 6, 652655 (2007).
http://dx.doi.org/10.1038/nmat1967
6.
6. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Science 306, 666 (2004).
http://dx.doi.org/10.1126/science.1102896
7.
7. S. Park and R. Ruoff, Nature Nanotechnol. 4, 217224 (2009).
http://dx.doi.org/10.1038/nnano.2009.58
8.
8. K. V. Emtsev, A. Bostwick, K. Horn, J. Jobst, G. L. Kellogg, L. Ley, J. L. McChesney, T. Ohta, S. A. Reshanov, J. Röhrl, E. Rotenberg, A. K. Schmid, D. Waldmann, H. B. Weber, and T. Seyller, Nature Mater. 8, 203207 (2009).
http://dx.doi.org/10.1038/nmat2382
9.
9. K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J.-H. Ahn, P. Kim, J.-Y. Choi, and B. H. Hong, Nature 457, 706710 (2009).
http://dx.doi.org/10.1038/nature07719
10.
10. H. O. Jeschke, M. E. Garcia, and K. H. Bennemann, Phys. Rev. Lett. 87, 015003 (2001).
http://dx.doi.org/10.1103/PhysRevLett.87.015003
11.
11. Y. Miyamoto, H. Zhang, and D. Tománek, Phys. Rev. Lett. 104, 208302 (2010).
http://dx.doi.org/10.1103/PhysRevLett.104.208302
12.
12. M. Qian, Y. S. Zhou, Y. Gao, J. B. Park, T. Feng, S. M. Huang, Z. Sun, L. Jiang, and Y. F. Lu, Appl. Phys. Lett. 98, 173108 (2011).
http://dx.doi.org/10.1063/1.3584021
13.
13. S. I. Kudryashov, J. Appl. Phys. 100, 036103 (2006).
http://dx.doi.org/10.1063/1.2219376
14.
14. C. R. Dean, A. F. Young, I. Meric, C. Lee, L. Wang, S. Sorgenfrei, K. Watanabe, T. Taniguchi, P. Kim, K. L. Shepard, and J. Hone, Nat. Nanotechnol. 5, 722726 (2010).
http://dx.doi.org/10.1038/nnano.2010.172
15.
15. W. Gannett, W. Regan, K. Watanabe, T. Taniguchi, M. F. Crommie, and A. Zettl, Appl. Phys. Lett. 98, 242105 (2011).
http://dx.doi.org/10.1063/1.3599708
16.
16. M. Lenner, A. Kaplan, C. Huchon, and R. E. Palmer, Phys. Rev. B 79, 184105 (2009).
http://dx.doi.org/10.1103/PhysRevB.79.184105
17.
17. H. Jeschke and M. Garcia, Appl. Surf. Sci. 197, 107113 (2002).
http://dx.doi.org/10.1016/S0169-4332(02)00312-4
18.
18. F. Carbone, P. Baum, P. Rudolf, and A. H. Zewail, Phys. Rev. Lett. 100, 035501 (2008).
http://dx.doi.org/10.1103/PhysRevLett.100.035501
19.
19. F. Carbone, G. Aubock, A. Cannizzo, F. Van Mourik, R. R. Nair, A. K. Geim, K. S. Novoselov, and M. Chergui, Chem. Phys. Lett. 504, 3740 (2011).
http://dx.doi.org/10.1016/j.cplett.2011.01.052
http://aip.metastore.ingenta.com/content/aip/journal/apl/100/15/10.1063/1.3703599
Loading
/content/aip/journal/apl/100/15/10.1063/1.3703599
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apl/100/15/10.1063/1.3703599
2012-04-12
2014-07-22

Abstract

We present a laser induced ablation process to fabricate ultrathin graphitic flakes. By varying the fluence of the ablating pulsed fs-laser radiation, we identify distinct values for "thermal" evaporation and so-called "non-thermal" ablation of graphitic flakes. The presence of the non-thermal ablation is a direct consequence of the strong asymmetry of the bonding strength in normal and in-plane direction in layered materials, such as graphite. The experimentally extracted non-thermal ablation threshold for graphite of 250 mJ/cm2 agrees well with theoretical predictions. Finally, we deposited ultrathin graphitic flakes of 50 μm2 in size, which we characterize by Raman spectroscopy and scanning force microscopy.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/100/15/1.3703599.html;jsessionid=3r3p7wogk2cjf.x-aip-live-06?itemId=/content/aip/journal/apl/100/15/10.1063/1.3703599&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Laser induced non-thermal deposition of ultrathin graphite
http://aip.metastore.ingenta.com/content/aip/journal/apl/100/15/10.1063/1.3703599
10.1063/1.3703599
SEARCH_EXPAND_ITEM