1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Highly efficient organic optoelectronic conversion induced by electric double layers in ionic liquids
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/100/16/10.1063/1.3697988
1.
1. J. H. Cho, J. Lee, Y. Xia, B. Kim, Y. He, M. J. Renn, T. P. Lodge, and C. D. Frisbie, Nature Mater. 7, 900 (2008);
http://dx.doi.org/10.1038/nmat2291
1. A. S. Dhoot, C. Israel, X. Moya, N. D. Mathur, and R. H. Friend, Phys. Rev. Lett. 102, 136402 (2009);
http://dx.doi.org/10.1103/PhysRevLett.102.136402
1. J. T. Ye, S. Inoue, K. Kobayashi, Y. Kasahara, H. T. Yuan, H. Shimotani, and Y. Iwasa, Nature Mater. 9, 125 (2010).
http://dx.doi.org/10.1038/nmat2587
2.
2. H. von Helmholtz, Ann. Phys. Chem. 243(7), 337 (1879);
http://dx.doi.org/10.1002/andp.18792430702
2. H. Wang and L. Pilon, J. Phys. Chem. C 115, 16711 (2011).
http://dx.doi.org/10.1021/jp204498e
3.
3. H. Yuan, H. Shimotani, A. Tsukazaki, A. Ohtomo, M. Kawasaki, and Y. Iwasa, Adv. Funct. Mater. 19, 1046 (2009).
http://dx.doi.org/10.1002/adfm.200801633
4.
4. B. C. Thompson and J. M. J. Fréchet, Angew. Chem., Int. Ed. 47, 58 (2008);
http://dx.doi.org/10.1002/anie.200702506
4. K. M. Coakley and M. D. McGehee, Chem. Mater. 16, 4533 (2004).
http://dx.doi.org/10.1021/cm049654n
5.
5. X. Gong, M. Tong, Y. Xia, W. Cai, S. M. Ji, Y. Cao, G. Yu, C. L. Shieh, B. Nilsson, and A. J. Heeger, Science 325, 1665 (2009);
http://dx.doi.org/10.1126/science.1176706
5. T. M. Clarke and J. R. Durrant, Chem. Rev. 110, 6736 (2010);
http://dx.doi.org/10.1021/cr900271s
5. C. J. Brabec, N. S. Sariciftci, and J. C. Hummelen, Adv. Funct. Mater. 11, 15 (2001).
http://dx.doi.org/10.1002/1616-3028(200102)11:1<>1.0.CO;2-Q
6.
6. G. Horowitz, Adv. Mater. 2, 287 (1990).
http://dx.doi.org/10.1002/adma.19900020604
7.
7. S. Günes, H. Neugebauer, and N. S. Sariciftci, Chem. Rev. 107, 1324 (2007).
http://dx.doi.org/10.1021/cr050149z
8.
8. Y. H. Kim, C. Sachse, M. L. Machala, C. May, L. Müller-Meskamp, and K. Leo, Adv. Funct. Mater. 21, 1076 (2011).
http://dx.doi.org/10.1002/adfm.201002290
9.
9. M. Armand, F. Endres, D. R. MacFarlane, H. Ohno, and B. Scrosati, Nature Mater. 8, 621 (2009);
http://dx.doi.org/10.1038/nmat2448
9. P. Wang, S. M. Zakeeruddin, R. Humphry-Baker, and M. Grätzel, Chem. Mater, 16, 2694 (2004);
http://dx.doi.org/10.1021/cm049916l
9. D. Kuang, P. Wang, S. Ito, S. M. Zakeeruddin, and M. Grätzel, J. Am. Chem. Soc. 128, 7732 (2006).
http://dx.doi.org/10.1021/ja061714y
10.
10. Y. Xia, J. H. Cho, J. Lee, P. P. Ruden, and C. D. Frisbie, Adv. Mater. 21, 2174 (2009).
http://dx.doi.org/10.1002/adma.200803437
11.
11. A. Mohite, S. Chakraborty, P. Gopinath, G. U. Sumanasekera, and B. W. Alphenaar, Appl. Phys. Lett. 86, 061114 (2005);
http://dx.doi.org/10.1063/1.1863447
11. T. Fukuma, K. Umeda, K. Kobayashi, H. Yamada, and K. Matsushige, Jpn. J. Appl. Phys. 41, 4903 (2002).
http://dx.doi.org/10.1143/JJAP.41.4903
12.
12. B. Skinner, T. Chen, M. S. Loth, and B. I. Shklovskii, Phys. Rev. E 83, 056102 (2011);
http://dx.doi.org/10.1103/PhysRevE.83.056102
12. C. Largeot, C. Portet, J. Chmiola, P. L. Taberna, Y. Gogotsi, and P. Simon, J. Am. Chem. Soc. 130, 2730 (2008);
http://dx.doi.org/10.1021/ja7106178
12. H. Itoi, H. Nishihara, T. Kogure, and T. Kyotani, J. Am. Chem. Soc. 133, 1165 (2011);
http://dx.doi.org/10.1021/ja108315p
12. M. V. Fedorov and A. A. Kornyshev, J. Phys. Chem. B 112, 11868 (2008).
http://dx.doi.org/10.1021/jp803440q
13.
13. R. Misra, M. McCarthy, and A. F. Hebard, Appl. Phys. Lett. 90, 052905 (2007).
http://dx.doi.org/10.1063/1.2437663
14.
14.See supplementary material at http://dx.doi.org/10.1063/1.3697988 for device fabrication, characterization, experimental setup, and photocurrent response. [Supplementary Material]
15.
15. L. Hu, Y. Noda, H. Ito, H. Kishida, A. Nakamura, and K. Awaga, Appl. Phys. Lett. 96, 243303 (2010).
http://dx.doi.org/10.1063/1.3454915
16.
16. H. Yuan, H. Shimotani, A. Tsukazaki, A. Ohtomo, M. Kawasaki, and Y. Iwasa, J. Am. Chem. Soc. 132, 6672 (2010).
http://dx.doi.org/10.1021/ja909110s
17.
17. H. Yuan, H. Shimotani, J. Ye, S. Yoon, H. Aliah, A. Tsukazaki, M. Kawasaki, and Y. Iwasa, J. Am. Chem. Soc. 132, 18402 (2010).
http://dx.doi.org/10.1021/ja108912x
18.
18. P. Peumans, A. Yakimov, and S. R. Forrest, J. Appl. Phys. 93, 3693 (2003);
http://dx.doi.org/10.1063/1.1534621
18. L. G. Yang, H. Z. Chen, and M. Wang, Thin Solid Films 516, 7701 (2008).
http://dx.doi.org/10.1016/j.tsf.2008.03.027
19.
19. A. Iwasaki, L. Hu, R. Suizu, K. Nomura, H. Yoshikawa, K. Awaga, Y. Noda, K. Kanai, Y. Ouchi, K. Seki, and H. Ito, Angew. Chem., Int. Ed. 48, 4022 (2009);
http://dx.doi.org/10.1002/anie.200900472
19. K. S. Narayan and T. B. Singh, Appl. Phys. Lett. 74, 3456 (1999);
http://dx.doi.org/10.1063/1.124126
19. G. A. O’Brien, A. J. Quinn, D. A. Tanner, and G. Redmond, Adv. Mater. 18, 2379 (2006).
http://dx.doi.org/10.1002/adma.200601012
20.
journal-id:
http://aip.metastore.ingenta.com/content/aip/journal/apl/100/16/10.1063/1.3697988
Loading
View: Figures

Figures

Image of FIG. 1.

Click to view

FIG. 1.

Potential drops in ionic liquid (a) and solid-state (b) dielectrics, which are sandwiched by an electrode and organic semiconductor.

Image of FIG. 2.

Click to view

FIG. 2.

(a) The structure of conventional organic photocells, in which the incident light irradiates the superimposed area between top and bottom electrodes. (b) The structure of electrode-position-free organic photocells, in which the incident light directly irradiates the organic layer(s) without passing through the bottom electrode.

Image of FIG. 3.

Click to view

FIG. 3.

(a) The device structure of ITO/DEME-TFSI/ZnPc:C60/Al with the molecular structures of ZnPc, C60 and DEME-TFSI. The equivalent circuit is also shown, in which the two C EDL are the capacitors formed at the interfaces, and the R Bulk is the resistor of bulk DEME-TFSI. (b) The device structure of ITO/PVDF/ZnPc:C60/Al, the molecular structure of PVDF, and the equivalent circuit, in which C is the capacitor for the PVDF layer. (c) The photoresponse of the ITO/DEME-TFSI (0.15 mm)/ZnPc:C60 (50 nm)/Al (black curve) and ITO/PVDF (200 nm)/ZnPc:C60 (50 nm)/Al (blue) photocells under illumination of a light-chopper-modulated 532 nm laser (3000 Hz) with a power density of 13 mW/cm2. The red curve shows the time dependence of the incident light power density.

Image of FIG. 4.

Click to view

FIG. 4.

(a) EQE (black line) and IQE (red line) spectra of the ITO/DEME-TFSI (0.15 mm)/ZnPc:C60 (25 nm)/Al photocells obtained by irradiation of the light-chopper-modulated monochromatic light from 400 nm to 800 nm (3000 Hz) without a bias voltage, which are calculated from the peak current of the photocells. (b) Responsivity spectrum (black), which is calculated from the EQE and the absorbance spectrum (red) of ZnPc:C60 (ratio 1:1, 25 nm) blend film.

Image of FIG. 5.

Click to view

FIG. 5.

(a) The scheme for the EPF measurements: cross section and bottom views, in which the incident light spot (red cross) moves from the center of the superimposed area between ITO and Al to the non-superimposed area along the line-shape Al electrode. (b) The distance dependence of the light-on peak photocurrent for the DEME-TFSI (square) and PVDF (triangle) photocells, and the values are normalized by those at d = −1 mm. The distance d is between the laser spot (0.36 mm in diameter) and the right edge of the ITO electrode (see (a)), and the red curve shows the admittance of the DEME-TFSI cell, in which the values are normalized by that at d = −1 mm. (c) The scheme for the cell impedance measurements: cross section and bottom views, in which the Al electrode is parallel to the ITO electrode and d represents the gap distance between the two electrodes.

Loading

Article metrics loading...

/content/aip/journal/apl/100/16/10.1063/1.3697988
2012-04-19
2014-04-23

Abstract

In the present paper, highly efficient organic optoelectronic conversion has been demonstrated, induced by the electric double layers(EDLs) in ionic liquids. For the organic photocell, indium tin oxide/ionic liquid/charge-separation layer (zinc phthalocyanine:fullerene)/aluminum, in which the EDLs enhance the charge separation, a large photocurrent response can be generated. By this method, the internal quantum efficiency can reach 93% and a responsivity of 142 mA/W can be achieved. Since the EDLs show little dependence on the thickness of the ionic liquid, a very large photocurrent can be produced without the electrodes being superimposed along the light path.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/100/16/1.3697988.html;jsessionid=aiff0gq73froi.x-aip-live-03?itemId=/content/aip/journal/apl/100/16/10.1063/1.3697988&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Highly efficient organic optoelectronic conversion induced by electric double layers in ionic liquids
http://aip.metastore.ingenta.com/content/aip/journal/apl/100/16/10.1063/1.3697988
10.1063/1.3697988
SEARCH_EXPAND_ITEM