1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Photo-origami—Bending and folding polymers with light
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/100/16/10.1063/1.3700719
1.
1. R. J. Lang, Origami Design Secrets (AK Peters Ltd., Natick, MA, USA, 2003).
2.
2. V. N. Dubey and L. S. Dai, Ind. Robot 33, 8287 (2006).
http://dx.doi.org/10.1108/01439910610651374
3.
3. W. N. Wu and Z. You, Proc. R. Soc. London, Ser. A 467, 25612574 (2011).
http://dx.doi.org/10.1098/rspa.2011.0120
4.
4. Z. Merali, Science 332, 13761377 (2011).
http://dx.doi.org/10.1126/science.332.6036.1376
5.
5. X. Guo, H. Li, B. K. Ahn, K. J. Hsia, J. A. Lewis, and R. G. Nuzzo, Proc. Natl. Acad. Sci. U.S.A. 106, 2014920154 (2009).
http://dx.doi.org/10.1073/pnas.0907390106
6.
6. B. Myers, M. Bernardi, and J. C. Grossman, Appl. Phys. Lett. 96, 071902 (2010).
http://dx.doi.org/10.1063/1.3308490
7.
7. K. Kuribayashi, K. Tsuchiya, Z. You, D. Tomus, M. Umemoto, T. Ito, and M. Sasaki, Mater. Sci. Eng., A 419, 131137 (2006).
http://dx.doi.org/10.1016/j.msea.2005.12.016
8.
8. C. L. Randall, E. Gultepe, and D. H. Gracias, Trends Biotechnol. 30(3), 138146 (2012).
http://dx.doi.org/10.1016/j.tibtech.2011.06.013
9.
9. S. Zakharchenko, S. Evgeni, and I. Leonid, Biomacromolecules 12, 22112215 (2011).
http://dx.doi.org/10.1021/bm2002945
10.
10. B. V. K. J. Schmidt, N. Fechler, J. Falkenhagen, and J.-F. Lutz, Nat. Chem. 3, 234238 (2011).
http://dx.doi.org/10.1038/nchem.964
11.
11. E. S. Andersen, M. Dong, M. M. Nielsen, K. Jahn, R. Subramani, W. Mamdouh, M. M. Golas, B. Sander, H. Stark, C. L. P. Oliveira, J. S. Pedersen, V. Birkedal, F. Besenbacher, K. V. Gothelf, and J. Kjems, Nature (London) 459, 7376 (2009).
http://dx.doi.org/10.1038/nature07971
12.
12. D. Han, S. Pal, J. Nangreaeve, Z. Deng, Y. Liu, and H. Yan, Science 332, 342346 (2011).
http://dx.doi.org/10.1126/science.1202998
13.
13. D. J. Balkcom and M. T. Mason, Int. J. Robot. Res. 27, 613627 (2008).
http://dx.doi.org/10.1177/0278364908090235
14.
14. E. Hawkes, B. An, N. M. Benbernou, H. Tanaka, S. Kim, E. D. Demaine, D. Rus, and R. J. Wood, Proc. Natl. Acad. Sci. U.S.A. 107(28), 1244112445 (2010).
http://dx.doi.org/10.1073/pnas.0914069107
15.
15. L. Mahadevan and S. Rica, Science 307, 1740 (2005).
http://dx.doi.org/10.1126/science.1105169
16.
16. M. J. Harrington, K. Razghand, F. Ditsch, L. Guiducci, M. Rueggeberg, J. W. C. Dunlop, P. Fratzl, C. Neinhuis, and I. Burgert, Nat. Commun. 2, (2011), Article No. 337.
http://dx.doi.org/10.1038/ncomms1336
17.
17. C. Py, P. Reverdy, L. Doppler, J. Bico, B. Roman, and C. N. Baroud, Phys. Rev. Lett. 98, 156103 (2007).
http://dx.doi.org/10.1103/PhysRevLett.98.156103
18.
18. M. Pineirua, J. Bico, and B. Roman, Soft Matter 6, 44914496 (2010).
http://dx.doi.org/10.1039/c0sm00004c
19.
19. I. Leonid, Soft Matter 7, 67866791 (2011).
http://dx.doi.org/10.1039/c1sm05476g
20.
20. J.-H. Cho, M. D. Keung, N. Verellen, L. Agae, V. V. Moshchalkov, P. Wan Dorpe, and D. H Gracias, Small 7, 19431948 (2011).
http://dx.doi.org/10.1002/smll.201100568
21.
21. Y. Liu, J. K. Boyles, J. Genzer, and M. D. Dickey, Soft Matter 8, 17641769 (2012).
http://dx.doi.org/10.1039/c1sm06564e
22.
22. K. N. Long, T. F. Scott, M. L. Dunn, and H. J. Qi, Int. J. Solids Struct. 48, 20892101 (2011).
http://dx.doi.org/10.1016/j.ijsolstr.2011.02.027
23.
23. K. N. Long, T. F. Scott, H. J. Qi, C. N. Bowman, and M. L. Dunn, J. Mech. Phys. Solids 57, 11031121 (2009).
http://dx.doi.org/10.1016/j.jmps.2009.03.003
24.
24. T. F. Scott, A. D. Schneider, W. D. Cook, and C. N. Bowman, Science 308, 16151617 (2005).
http://dx.doi.org/10.1126/science.1110505
25.
25. T. F. Scott, R. B. Draughon, and C. N. Bowman, Adv. Mater. 18, 21282132 (2006).
http://dx.doi.org/10.1002/adma.200600379
26.
26. R. J. Wojtecki, M. A. Meador, and S. J. Rowan, Nature Mater. 10, 1427 (2011).
http://dx.doi.org/10.1038/nmat2891
27.
27. A. Lendlein, H. Jiang, O. Jünger, and R. Langer, Nature (London) 434, 879882 (2005).
http://dx.doi.org/10.1038/nature03496
28.
28. M. Warner, Liquid Crystal Elastomers (Oxford University Press, Oxford, UK, 2007).
29.
29. M.-H. Li, P. Keller, B. Li, X. Wang, and M. Brunet, Adv. Mater. 15, 569572 (2003).
http://dx.doi.org/10.1002/adma.200304552
30.
30. T. Ikeda, M. Nakano, Y. Yu, O. Tsutsumi, and A. Kanazawa, Adv. Mater. 15, 201205 (2003).
http://dx.doi.org/10.1002/adma.200390045
31.
31. M. Camacho-Lopez, H. Finkelmann, P. Palffy-Muhoray, and M. Shelley, Nature Mater. 3, 307310 (2004).
http://dx.doi.org/10.1038/nmat1118
32.
32. M. L. Dunn, J. Appl. Phys. 102, 013506 (2007).
http://dx.doi.org/10.1063/1.2745063
33.
33. T. J. White, N. Tabiryan, V. P. Tondiglia, S. V. Serak, U. Hrozhyk, R. A. Vaia, and T. J. Bunning, Soft Matter 4, 17961798 (2008).
http://dx.doi.org/10.1039/b805434g
34.
34. T. J. White, S. V. Serak, N. V. Tabiryan, N. V. R. A. Vaia, and T. J. Bunning, J. Mater. Chem. 19, 10801085 (2009).
http://dx.doi.org/10.1039/b818457g
35.
35. D. Corbett and M. Warner, Liq. Cryst. 36, 12631280 (2009).
http://dx.doi.org/10.1080/02678290903062994
36.
36. K. M. Lee, H. Koerner, R. A. Vaia, T. J. Bunning, and T. J. White, Macromolecules 43, 81858190 (2010).
http://dx.doi.org/10.1021/ma1014758
37.
37. C. J. Kloxin, T. F. Scott, H. Y. Park, and C. N. Bowman, Adv. Mater. 23, 19771981 (2011).
http://dx.doi.org/10.1002/adma.201100323
38.
38. T. G. Leong, A. M. Zarafshar, and D. H. Gracias, Small 6, 792806 (2010).
http://dx.doi.org/10.1002/smll.200901704
39.
39. J. Pajot, K. Maute, Y. Zhang, and M. L. Dunn, Int. J. Solids Struct. 43, 18321853 (2006).
http://dx.doi.org/10.1016/j.ijsolstr.2005.03.036
40.
40. M. Howard, J. Pajot, K. Maute, and M. L. Dunn, J. Microelectromech. Syst. 18, 11371148 (2009).
http://dx.doi.org/10.1109/JMEMS.2009.2025562
41.
41. M. L. Dunn and K. Maute, Mech. Mater. 43, 10831089 (2009).
http://dx.doi.org/10.1016/j.mechmat.2009.06.004
42.
42.See supplementary material at http://dx.doi.org/10.1063/1.3700719 for additional information on materials and methods, theory and simulation, the photomechanical protocols for creating the heart and box, and the results of experiments and simulations of the heart. [Supplementary Material]
http://aip.metastore.ingenta.com/content/aip/journal/apl/100/16/10.1063/1.3700719
Loading
/content/aip/journal/apl/100/16/10.1063/1.3700719
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apl/100/16/10.1063/1.3700719
2012-04-20
2014-07-30

Abstract

Photo-origami uses the dynamic control of the molecular architecture of a polymer by a combination of mechanical and non-contact optical stimuli to design and program spatially and temporally variable mechanical and optical fields into a material. The fields are essentially actuators, embedded in the material at molecular resolution, designed to enable controllable, sequenced, macroscopic bending and folding to create three-dimensional material structures. Here, we demonstrate, through a combination of theory, simulation-based design, synthesis, and experiment, the operative phenomena and capabilities of photo-origami that highlight its potential as a powerful, and potentially manufacturable, approach to create three-dimensional material structures.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/100/16/1.3700719.html;jsessionid=263r6og0bui5h.x-aip-live-06?itemId=/content/aip/journal/apl/100/16/10.1063/1.3700719&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Photo-origami—Bending and folding polymers with light
http://aip.metastore.ingenta.com/content/aip/journal/apl/100/16/10.1063/1.3700719
10.1063/1.3700719
SEARCH_EXPAND_ITEM