1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
f
Effect of quantum well cap layer thickness on the microstructure and performance of InGaN/GaN solar cells
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/100/16/10.1063/1.4704189
1.
1. Y. Nanishi, Y. Saito, and T. Yamaguchi, Jpn. J. Appl. Phys., Part 1 42, 2549 (2003).
http://dx.doi.org/10.1143/JJAP.42.2549
2.
2. J. Wu, W. Walukiewicz, K. M. Yu, J. W. Ager, E. E. Haller, H. Lu, W. J. Schaff, Y. Saito, and Y. Nanishi, Appl. Phys. Lett. 80, 3967 (2002).
http://dx.doi.org/10.1063/1.1482786
3.
3. J. Q. Wu, J. Appl. Phys. 106, 011101 (2009).
http://dx.doi.org/10.1063/1.3155798
4.
4. A. David and M. J. Grundmann, Appl. Phys. Lett. 97, 033501 (2010).
http://dx.doi.org/10.1063/1.3462916
5.
5. L. A. Reichertz, I. Gherasoiu, K. M. Yu, V. M. Kao, W. Walukiewicz, and J. W. Ager, Appl. Phys. Express 2, 122202 (2009).
http://dx.doi.org/10.1143/APEX.2.122202
6.
6. A. De Vos, Endoreversible Thermodynamics of Solar Energy Conversion (Oxford University Press, Oxford, 1992), p. 90.
7.
7. D. J. Friedman, Curr. Opin. Solid State Mater. Sci. 14, 131 (2010).
http://dx.doi.org/10.1016/j.cossms.2010.07.001
8.
8. R. Dahal, B. Pantha, J. Li, J. Y. Lin, and H. X. Jiang, Appl. Phys. Lett. 94, 063505 (2009).
http://dx.doi.org/10.1063/1.3081123
9.
9. K. Y. Lai, G. J. Lin, Y. F. Chen, Y. L. Lai, and J. H. He, IEEE Electron Device Lett. 32, 179 (2011).
http://dx.doi.org/10.1109/LED.2010.2091619
10.
10. Y. Kuwahara, T. Fujii, T. Sugiyama, D. Iida, Y. Isobe, Y. Fujiyama, Y. Morita, M. Iwaya, T. Takeuchi, S. Kamiyama, I. Akasaki, and H. Amano, Appl. Phys. Express 4, 021001 (2011).
http://dx.doi.org/10.1143/APEX.4.021001
11.
11. J. S. Speck and S. J. Rosner, Physica B 273/274, 24 (1999).
http://dx.doi.org/10.1016/S0921-4526(99)00399-3
12.
12. M. S. Kumar, J. Y. Park, Y. S. Lee, S. J. Chung, C.-H. Hong, and E.-K. Suh, J. Phys. D: Appl. Phys. 40, 5050 (2007).
http://dx.doi.org/10.1088/0022-3727/40/17/007
13.
13. S. M. Ting, J. C. Ramer, D. I. Florescu, V. N. Merai, B. E. Albert, A. Parekh, D. S. Lee, D. Lu, D. V. Christini, L. Liu, and E. A. Armour, J. Appl. Phys. 94, 1461 (2003).
http://dx.doi.org/10.1063/1.1586972
14.
14. S. T. Pendlebury, P. J. Parbrook, D. J. Mowbray, D. A. Wood, and K. B. Lee, J Cryst. Growth 307, 363 (2007).
http://dx.doi.org/10.1016/j.jcrysgro.2007.07.018
15.
15. S. J. Leem, Y. C. Shin, E. H. Kim, C. M. Kim, B. G. Lee, Y. Moon, I. H. Lee, and T. G. Kim, Semicond. Sci. Technol. 23, 125039 (2008).
http://dx.doi.org/10.1088/0268-1242/23/12/125039
16.
16. J.-W. Ju, H.-S. Kim, L.-W. Jang, J. H. Baek, D.-C. Shin, and I.-H. Lee, Nanotechnology 18, 295402 (2007).
http://dx.doi.org/10.1088/0957-4484/18/29/295402
17.
17. P. M. F. J. Costa, R. Datta, M. J. Kappers, M. E. Vickers, C. J. Humphreys, D. M. Graham, P. Dawson, M. J. Godfrey, E. J. Thrush, and J. T. Mullins, Phys. Status Solidi A 203, 1729 (2006).
http://dx.doi.org/10.1002/pssa.200565219
18.
18. C. J. Neufeld, S. C. Cruz, R. M. Farrell, M. Iza, S. Keller, S. Nakamura, S. P. DenBaars, J. S. Speck, and U. K. Mishra, Appl. Phys. Lett. 99, 071104 (2011).
http://dx.doi.org/10.1063/1.3624850
19.
19. R. M. Farrell, C. J. Neufeld, S. C. Cruz, J. R. Lang, M. Iza, S. Keller, S. Nakamura, S. P. DenBaars, U. K. Mishra, and J. S. Speck, Appl. Phys. Lett. 98, 201107 (2011).
http://dx.doi.org/10.1063/1.3591976
http://aip.metastore.ingenta.com/content/aip/journal/apl/100/16/10.1063/1.4704189
Loading
/content/aip/journal/apl/100/16/10.1063/1.4704189
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apl/100/16/10.1063/1.4704189
2012-04-16
2014-12-21

Abstract

A two-step GaN barrier growth methodology was developed for InxGa1−xN/GaN multiple quantum wellsolar cells in which a lower temperature GaN cap layer was grown on top of the quantum wells(QWs) and then followed by a higher temperature GaN barrier layer. The performance of the solar cells improved markedly by increasing the low temperature GaN cap layer thickness from 1.5 to 3.0 nm. High-angle annular dark field scanning transmission electron microscopy and atom probe tomography measurements showed that increasing the GaN cap layer thickness improved the uniformity and increased the average indium content of the QWs.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/100/16/1.4704189.html;jsessionid=iwdtwr5l1dcp.x-aip-live-06?itemId=/content/aip/journal/apl/100/16/10.1063/1.4704189&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Effect of quantum well cap layer thickness on the microstructure and performance of InGaN/GaN solar cells
http://aip.metastore.ingenta.com/content/aip/journal/apl/100/16/10.1063/1.4704189
10.1063/1.4704189
SEARCH_EXPAND_ITEM