Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/apl/100/16/10.1063/1.4704984
1.
1. M. Coïsson, F. Celegato, E. Olivetti, P. Tiberto, F. Vinai, and M. Baricco, J. Appl. Phys. 104, 033902 (2008).
http://dx.doi.org/10.1063/1.2960454
2.
2. A. V. Svalov, G. V. Kurlyandskaya, H. Hammer, P. A. Savin, and O. I. Tutynina, Tech. Phys. 49, 868 (2004).
http://dx.doi.org/10.1134/1.1778860
3.
3. N. Amos, R. Fernández, R. Ikkawi, B. Lee, A. Lavrenov, A. Krichevsky, D. Litvinov, and S. Khizroev, J. Appl. Phys. 103, 07E732, (2008).
http://dx.doi.org/10.1063/1.2835441
4.
4. S. F. Cheng, P. Lubitz, Y. Zheng, and A. S. Edelstein, J. Magn. Magn. Mater. 282, 109 (2004).
http://dx.doi.org/10.1016/j.jmmm.2004.04.027
5.
5. J. Ben Youssef, N. Vukadinovic, D. Billet, and M. Labrune, Phys. Rev. B 69, 174402 (2004).
http://dx.doi.org/10.1103/PhysRevB.69.174402
6.
6. C. A. Ramos, E. Vassallo Brigneti, J. Gómez, and A. Butera, Physica B 404, 2784 (2009).
http://dx.doi.org/10.1016/j.physb.2009.06.090
7.
7. T. Dastagir, W. Xu, S. Sinha, H. Wu, Y. Cao, and H. Yua, Appl. Phys. Lett. 97, 162506 (2010).
http://dx.doi.org/10.1063/1.3502478
8.
8. A. V. Svalov, R. Aseguinolaza, A. Garcia-Arribas, I. Orue, J. M. Barandiaran, J. Alonso, M. L. Fdez-Gubieda, and G. V. Kurlyandskaya, IEEE Trans. Magn. 46, 333 (2010).
http://dx.doi.org/10.1109/TMAG.2009.2032519
9.
9. M. Romera, R. Ranchal, D. Ciudad, M. Maicas, and C. Aroca. J. Appl. Phys. 110, 083910 (2011).
http://dx.doi.org/10.1063/1.3647768
10.
10. R. L. Sommer, A. Gündel, and C. L. Chien, J. Appl. Phys. 86, 1057 (1999).
http://dx.doi.org/10.1063/1.370847
11.
11. G. V. Kurlyandskaya, L. Elbaile, F. Alves, B. Ahamada, R Barrue, A. V. Svalov, and V. O. Vas’kovskiy, J. Phys.: Condens. Matter. 16, 6561 (2004).
http://dx.doi.org/10.1088/0953-8984/16/36/021
12.
12. G. V. Kurlyandskaya, A. V. Svalov, E. Fernandez, A. Garcia-Arribas, and J. M. Barandiaran, J. Appl. Phys. 107, 09C502 (2010).
http://dx.doi.org/10.1063/1.3355473
13.
13. W. F. Egelhoff, Jr., J. Bonevich, P. Pong, C. R. Beauchamp, G. R. Stafford, J. Unguris, and R. D. McMichael, J. Appl. Phys., 105, 013921 (2009).
http://dx.doi.org/10.1063/1.3058673
14.
14. E. Feldtkeller. J. Appl. Phys. 39, 1181 (1968).
http://dx.doi.org/10.1063/1.1656218
15.
15. V. O. Vas’kovskii, P. A. Savin, V. N. Lepalovskii, and A. A. Ryazantsev, Phys. Solid State 39, 1958 (1997).
http://dx.doi.org/10.1134/1.1130208
16.
16. L. Neel, Comptes Rendus 255, 1676 (1962).
17.
17. H. Hoffmann, IEEE Trans. Magn. 4, 32 (1968).
http://dx.doi.org/10.1109/TMAG.1968.1066186
18.
18. D. de Cos, J. M. Barandiaran, A. Garcia-Arribas, V.O. Vas’kovskiy, and G. V. Kurlyandskaya, IEEE Trans. Magn. 44, 3863 (2008).
http://dx.doi.org/10.1109/TMAG.2008.2001335
19.
19. D. Babonneau, F. Petroff, J. L. Maurice, F. Vaurès, and A. Naudon, Appl. Phys. Lett. 76, 2892 (2000).
http://dx.doi.org/10.1063/1.126508
20.
20. D. Babonneau, F. Pailloux, J. P. Eymery, M. F. Denanot, Ph. Guérin, E. Fonda, and O. Lyon, Phys. Rev. B 71, 035430 (2005).
http://dx.doi.org/10.1103/PhysRevB.71.035430
21.
21. B.P. Tonner, Z.-L. Han, and J. Zhang Phys. Rev. B 47, 9723 (1993).
http://dx.doi.org/10.1103/PhysRevB.47.9723
22.
22. P. Schmailzl, K. Schmidt, P. Bayer, R. Döll, and K. Heinz, Surf. Sci. 312, 73 (1994).
http://dx.doi.org/10.1016/0039-6028(94)90804-4
23.
23. M. Farle, K. Baberschke, U. Stetter, A. Aspelmeier, and F. Gerhardter, Phys. Rev. B 47, 11571 (1993).
http://dx.doi.org/10.1103/PhysRevB.47.11571
24.
24. A. V. Svalov, V. O. Vas’kovskiy, J. M. Barandiarán, K. G. Balymov, A. N. Sorokin, I. Orue, A. Larrañaga, N. N. Schegoleva, and G. V. Kurlyandskaya, Solid State Phenom. 168–169, 281 (2011).
http://dx.doi.org/10.4028/www.scientific.net/SSP.168-169.281
25.
25. D. Haskel, G. Srajer, J. C. Lang, J. Pollmann, C. S. Nelson, J. S. Jiang, and S. D. Bader. Phys. Rev. Lett. 87, 207201 (2001).
http://dx.doi.org/10.1103/PhysRevLett.87.207201
26.
26. A.V. Svalov, J. M. Barandiaran, V. O. Vas’kovskiy, G. V. Kurlyandskaya, L. Lezama, N. G. Bebenin, J. Gutierrez, and D. Schmool, J. Alloys Compd. 327, 5 (2001).
http://dx.doi.org/10.1016/S0925-8388(01)01410-4
27.
27. J. L. Prieto, М. G. Blamire, and J. E. Evetts, Phys. Rev. Lett. 90, 027201 (2003).
http://dx.doi.org/10.1103/PhysRevLett.90.027201
28.
28. Y. Sugita, H. Fujiwara, and T. Sato, Appl. Phys. Lett. 10, 229 (1967).
http://dx.doi.org/10.1063/1.1754924
http://aip.metastore.ingenta.com/content/aip/journal/apl/100/16/10.1063/1.4704984
Loading
/content/aip/journal/apl/100/16/10.1063/1.4704984
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apl/100/16/10.1063/1.4704984
2012-04-20
2016-02-09

Abstract

The microstructure and magnetic properties of sputtered permalloy films and FeNi(170 nm)/X/FeNi(170 nm) (X = Co, Fe, Gd, Gd-Co) sandwiches were studied. Laminating of the thick FeNi film with various spacers was done in order to control the magnetic softness of FeNi-based multilayers. In contrast to the Co and Fe spacers, Gd and Gd-Co magnetic spacers improved the softness of the FeNi/X/FeNi sandwiches. The magnetoimpedance responses were measured for [FeNi/Ti(6 nm)]2/FeNi and [FeNi/Gd(2 nm)]2/FeNi multilayers in a frequency range of 1–500 MHz: for all frequencies under consideration the highest magnetoimpedance variation was observed for [FeNi/Gd(2 nm)]2/FeNi multilayers.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/100/16/1.4704984.html;jsessionid=8qir8mpdj70li.x-aip-live-06?itemId=/content/aip/journal/apl/100/16/10.1063/1.4704984&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd