1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
The investigation of the diffusion length of cathode materials in organic light emitting devices through impedance characteristics
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/100/17/10.1063/1.3700805
1.
1. J. H. Lee, M. H. Wu, C. C. Chao, H. L. Chen, and M. K. Leung, Chem. Phys. Lett. 416, 234 (2005).
http://dx.doi.org/10.1016/j.cplett.2005.09.104
2.
2. Y. Cao, G. Yu, I. D. Parker, and A. J. Heeger, J. Appl. Phys. 88, 3618 (2000).
http://dx.doi.org/10.1063/1.1289518
3.
3. T. Oyamada, H. Sasabe, C. Adachi, S. Murase, T. Tominaga, and C. Maeda, Appl. Phys. Lett. 86, 033503 (2005).
http://dx.doi.org/10.1063/1.1852707
4.
4. Y. Park, V.-E. Choong, B. R. Hsieh, C. W. Tang, and Y. Gao, Phys. Rev. Lett. 78, 3955 (1997).
http://dx.doi.org/10.1103/PhysRevLett.78.3955
5.
5. G. Parthasarathy, C. Shen, A. Kahn, and S. R. Forrest, J. Appl. Phys. 89, 4986 (2001).
http://dx.doi.org/10.1063/1.1359161
6.
6. S. Olthof, J. Meiss, B. Lüssem, M. K. Riede, and K. Leo, Thin Solid Films 519, 1872 (2011).
http://dx.doi.org/10.1016/j.tsf.2010.10.051
7.
7. S. Berleb, W. Brütting, and G. Paasch, Org. Electron. 1, 41 (2000).
http://dx.doi.org/10.1016/S1566-1199(00)00007-0
8.
8. W. Brütting, S. Berleb, and A. G. Mückl, Org. Electron. 2, 1 (2001).
http://dx.doi.org/10.1016/S1566-1199(01)00009-X
9.
9. D. Y. Kondakov, J. R. Sandifer, C. W. Tang, and R. H. Young, J. Appl. Phys. 93(2 ), 1108 (2003).
http://dx.doi.org/10.1063/1.1531231
10.
10. J. H. Lee, J. J. Huang, C. C. Liao, P. J. Hu, and Y. Chang, Chem. Phys. Lett. 402, 335 (2005).
http://dx.doi.org/10.1016/j.cplett.2004.12.050
11.
11. D. Y. Kondakov, J. Appl. Phys. 97, 024503 (2005).
http://dx.doi.org/10.1063/1.1835567
12.
12. Y. Noguchi, N. Sato, Y. Tanaka, Y. Nakayama, and H. Ishii, Appl. Phys. Lett. 92, 203306 (2008).
http://dx.doi.org/10.1063/1.2936084
13.
13. D. Y. Kondakov, J. Appl. Phys. 99, 024901 (2006).
http://dx.doi.org/10.1063/1.2159549
14.
14. G. Garcia-Belmonte, H. J. Bolink, and J. Bisquert, Phys. Rev. B 75, 085316 (2007).
http://dx.doi.org/10.1103/PhysRevB.75.085316
15.
15. I. W. Wu, P. S. Wang, W. H. Tseng, J. H. Chang, and C. I. Wu, Org. Electron. 13, 13 (2012).
http://dx.doi.org/10.1016/j.orgel.2011.09.016
16.
16. I. W. Wu, Y. H. Chen, P. S. Wang, C. G. Wang, S. H. Hsu, and C. I. Wu, Appl. Phys. Lett. 96, 013301 (2010).
http://dx.doi.org/10.1063/1.3282682
17.
17. W. C. Lin, W. B. Wang, Y. C. Lin, B. Y. Yu, Y. Y. Chen, M. F. Hsu, J. H. Jou, and J. J. Shyue, Org. Electron. 10, 581 (2009).
http://dx.doi.org/10.1016/j.orgel.2009.02.012
18.
journal-id:
http://aip.metastore.ingenta.com/content/aip/journal/apl/100/17/10.1063/1.3700805
Loading

Figures

Image of FIG. 1.

Click to view

FIG. 1.

(a) Phase versus voltage and J-V (inset) and (b) Z-V characteristics of OLEDs with different ETL thicknesses. The film structures of these devices are ITO/NPB(800 Å)/Alq3/Al, with the thickness of Alq3 layers as indicated in the figures.

Image of FIG. 2.

Click to view

FIG. 2.

Illustration of the electrical potential of each layer inside the OLED devices at the transition voltage. The arrow indicates the difference between the turn on voltage and the transition voltage.

Image of FIG. 3.

Click to view

FIG. 3.

(a) Phase versus voltage and J-V (inset) and (b) Z-V characteristics of OLEDs with different cathode structures. The film structures of these devices are as follows: (1) Al: ITO/NPB(800 Å)/Alq3(800 Å)/Al, (2) Mg: ITO/NPB(800 Å)/Alq3(800 Å)/Mg, (3) LiF/Al: ITO/NPB(800 Å)/Alq3 (800 Å)/LiF/Al, and (4) Cs2CO3/Al: ITO/NPB(800 Å)/Alq3(800 Å)/Cs2CO3/Al.

Image of FIG. 4.

Click to view

FIG. 4.

(a) The transition voltage V0 versus Alq3 thickness characteristics ofOLEDs with various cathode structures. The thickness of NPB is 800 Å, andthe thicknesses of the Alq3 layers and cathode structures are as indicated. The functions of the fitting lines are shown as follows. (1) Al: , (2) Mg: , (3) LiF/Al: , and (4) Cs2CO3/Al: . (b) Illustration of the electrical potential inside the OLED devices with the diffusion of the cathode materials. The electrical potential difference between the turn on voltage and the transition voltage is reduced.

Tables

Generic image for table

Click to view

Table I.

The calculated diffusion length of OLEDs with various cathode structures.

Loading

Article metrics loading...

/content/aip/journal/apl/100/17/10.1063/1.3700805
2012-04-25
2014-04-19

Abstract

A non-destructive method to measure the diffusion length of the cathodematerials into the organic layers in organic light emitting diodes(OLEDs) is demonstrated. The measurement is based on a correlation between the transition voltage in the impedance-voltage (Z-V) characteristics, the density of the accumulation charges, and the thickness of the electron transport layers (ETLs). The transition voltages in Z-V characteristics deviate from the theoretical values owing to the decrease of the effective ETL thickness caused by the diffusion of the cathodematerials, which can be used to measure the diffusion length of metal ions into organic layers in OLEDs.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/100/17/1.3700805.html;jsessionid=18amol2zxe5mg.x-aip-live-02?itemId=/content/aip/journal/apl/100/17/10.1063/1.3700805&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: The investigation of the diffusion length of cathode materials in organic light emitting devices through impedance characteristics
http://aip.metastore.ingenta.com/content/aip/journal/apl/100/17/10.1063/1.3700805
10.1063/1.3700805
SEARCH_EXPAND_ITEM