1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Controlling light propagation with nanowires
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/100/17/10.1063/1.4704193
1.
1. Y. Wang, E. W. Plummer, and K. Kempa, Adv. Phys. 60, 799 (2011).
http://dx.doi.org/10.1080/00018732.2011.621320
2.
2. D. M. Pozar, Microwave Engineering, 3rd ed. (Wiley, New York, 2005).
3.
3. C. Fumeaux, M. A. Gritz, I. Codreanu, W. L. Schaich, F. J. Gonzalez, and G. D. Boreman, Infrared Phys. Technol. 41, 271 (2000).
http://dx.doi.org/10.1016/S1350-4495(00)00047-5
4.
4. A. Jorio, A. G. Souza Filho, V. W. Brar, A. K. Swan, M. S. Ünlü, B. B. Goldberg, A. Righi, J. H. Hafner, C. M. Lieber, R. Saito, G. Dresselhaus, and M. S. Dresselhaus, Phys. Rev. B 65, 121402R (2002).
http://dx.doi.org/10.1103/PhysRevB.65.121402
5.
5. Y. Wang, K. Kempa, B. Kimball, J. B. Carlson, G. Benham, W. Z. Li, T. Kempa, J. Rybczynski, A. Herczynski, and Z. F. Ren, Appl. Phys. Lett. 85, 2607 (2004).
http://dx.doi.org/10.1063/1.1797559
6.
6. K. Kempa, J. Rybczynski, Z. Huang, K. Gregorczyk, A. Vidan, B. Kimball, J. Carlson, G. Benham, Y. Wang, A. Herczynski, and Z. F. Ren, Adv. Mater. 19, 421 (2007).
http://dx.doi.org/10.1002/adma.200601187
7.
7. L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge University Press, 2006).
8.
8. L. Novotny, Phys. Rev. Lett. 98, 266802 (2007).
http://dx.doi.org/10.1103/PhysRevLett.98.266802
9.
9. P. Muhlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, Science 308, 1607 (2005).
http://dx.doi.org/10.1126/science.1111886
10.
10. G. Schider, J. R. Krenn, A. Hohenau, H. Ditlbacher, A. Leitner, F. R. Aussenegg, W. L. Schaich, I. Puscasu, B. Monacelli, and G. Boreman, Phys. Rev. B 68, 155427 (2003).
http://dx.doi.org/10.1103/PhysRevB.68.155427
11.
11. H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, M. Rogers, F. Hofer, F. R. Aussenegg, and J. R. Krenn, Phys. Rev. Lett. 95, 257403 (2005).
http://dx.doi.org/10.1103/PhysRevLett.95.257403
12.
12. J. Rybczynski, K. Kempa, A. Herczynski, Y. Wang, M. J. Naughton, Z. P. Huang, D. Cai, and M. Giersig, Appl. Phys. Lett. 90, 021104 (2007).
http://dx.doi.org/10.1063/1.2430400
13.
13. Y. Peng, X. Wang, and K. Kempa, Opt. Express 16, 1758 (2008).
http://dx.doi.org/10.1364/OE.16.001758
14.
14. J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, Phys. Rev. B 72, 075405 (2005).
http://dx.doi.org/10.1103/PhysRevB.72.075405
15.
15. X. Wang and K. Kempa, Phys. Rev. B 75, 245426 (2007).
http://dx.doi.org/10.1103/PhysRevB.75.245426
16.
16. J. Takahara, S. Yamagishi, H. Taki, A. Morimoto, and T. Kobayashi, Opt. Lett. 22, 475 (1997).
http://dx.doi.org/10.1364/OL.22.000475
17.
17. S. Zhang, H. Wei, K. Bao, U. Hakanson, N. J. Halas, P. Nordlander, and H. Xu, Phys. Rev. Lett. 107, 096801 (2011).
http://dx.doi.org/10.1103/PhysRevLett.107.096801
18.
18. X. Wang and K. Kempa, Phys. Rev. B 71, 233101 (2005).
http://dx.doi.org/10.1103/PhysRevB.71.233101
19.
19. A. Taflove, Computational Electrodynamics: The finite-difference time-domain method (Artech House, Norwood, MA, 1995).
20.
20. A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, Comput. Phys. Commun. 181, 687702 (2010).
http://dx.doi.org/10.1016/j.cpc.2009.11.008
21.
21. S. Nah, Y. Peng, C. Ropp, J. T. Fourkas, K. Kempa, E. Waks, and B. Shapiro, “Remote nanoscale photochemistry using guided, nonlinearly-generated emission in Ag nanowires” (unpublished).
22.
22. K. Kempa, X. Wang, Z. F. Ren and M. J. Naughton, Appl. Phys. Lett. 92, 043114 (2008).
http://dx.doi.org/10.1063/1.2839320
http://aip.metastore.ingenta.com/content/aip/journal/apl/100/17/10.1063/1.4704193
Loading

Figures

Image of FIG. 1.

Click to view

FIG. 1.

(a) Schematic of the nanowire geometry and the excitation scheme. The color maps of electric field components are simulated for silver nanowires in a dielectric medium excited with monochromatic light at two vacuum wavelengths:  nm (b) and (d);  nm (c) and (e). Two different polarization schemes used: excitation and mapped fields are both polarized in the z-direction (b), (c), and in the x-direction (d), (e). The color intensity represents the field strength, and color change represents the filed direction change (enhanced online). [URL: http://dx.doi.org/10.1063/1.4704193.1] [URL: http://dx.doi.org/10.1063/1.4704193.2] [URL: http://dx.doi.org/10.1063/1.4704193.3] [URL: http://dx.doi.org/10.1063/1.4704193.4]10.1063/1.4704193.110.1063/1.4704193.210.1063/1.4704193.310.1063/1.4704193.4

Image of FIG. 2.

Click to view

FIG. 2.

Photon energy vs axial component of the wavevector for an EM wave in vacuum (solid line), SPP of finite length nanowires (black dots), SPP of an infinitely long nanowire (red squares), and experiment (Ref. 11) (crosses). The dotted and dashed horizontal lines represent the surface plasma frequency of a planar metal surface and the Mie resonance of a spherical metallic nanoparticle, respectively. Inset: Etalon effects in silver nanowires of various lengths in vacuum.

Image of FIG. 3.

Click to view

FIG. 3.

Field maps of silver nanowire pairs (l = 2000 nm and D = 100 nm), with the top wire in each pair excited with a monochromatic light ( nm), as in Fig. 1(a). The excitation and the resulting field components are polarized in the z-direction. The distance between wires in a pair is d, and the measure of the wire coupling is r, the ratio of the field intensities at the distal ends of the two wires in a pair. Shown are results for uncoated (a) and (b), coated with 50 nm film of glass (c), (d), and coated with 50 nm film of a-Si (e), (f).

video/mp4,video/x-flv,video/flv,audio.mp3,audio.mpeg

Multimedia

The following multimedia file is available:
The following multimedia file is available:
The following multimedia file is available:
The following multimedia file is available:
Loading

Article metrics loading...

/content/aip/journal/apl/100/17/10.1063/1.4704193
2012-04-23
2014-04-23

Abstract

We study the interaction of electromagnetic waves (EM) with metallic nanowire systems for frequencies not far from the surface plasma frequency (polaritonic range). We employ calculation and simulation to show that when excited at one end with axially polarized EM waves,nanowires can function as efficient waveguides of surface plasmon polaritons (SPPs). From the Fabry-Perot resonances of standing SPP waves, we study their dispersion relation and show that for a vanishing SPP wavelength it is identical to that for a planar metallic surface.Nanowire systems can be employed in various nanophotonic applications, and we assess this potential by studying propagation characteristics of these nano-waveguides and their interactions.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/100/17/1.4704193.html;jsessionid=2879b9o9df6e5.x-aip-live-02?itemId=/content/aip/journal/apl/100/17/10.1063/1.4704193&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Controlling light propagation with nanowires
http://aip.metastore.ingenta.com/content/aip/journal/apl/100/17/10.1063/1.4704193
10.1063/1.4704193
SEARCH_EXPAND_ITEM