Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. Y. Wang, E. W. Plummer, and K. Kempa, Adv. Phys. 60, 799 (2011).
2. D. M. Pozar, Microwave Engineering, 3rd ed. (Wiley, New York, 2005).
3. C. Fumeaux, M. A. Gritz, I. Codreanu, W. L. Schaich, F. J. Gonzalez, and G. D. Boreman, Infrared Phys. Technol. 41, 271 (2000).
4. A. Jorio, A. G. Souza Filho, V. W. Brar, A. K. Swan, M. S. Ünlü, B. B. Goldberg, A. Righi, J. H. Hafner, C. M. Lieber, R. Saito, G. Dresselhaus, and M. S. Dresselhaus, Phys. Rev. B 65, 121402R (2002).
5. Y. Wang, K. Kempa, B. Kimball, J. B. Carlson, G. Benham, W. Z. Li, T. Kempa, J. Rybczynski, A. Herczynski, and Z. F. Ren, Appl. Phys. Lett. 85, 2607 (2004).
6. K. Kempa, J. Rybczynski, Z. Huang, K. Gregorczyk, A. Vidan, B. Kimball, J. Carlson, G. Benham, Y. Wang, A. Herczynski, and Z. F. Ren, Adv. Mater. 19, 421 (2007).
7. L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge University Press, 2006).
8. L. Novotny, Phys. Rev. Lett. 98, 266802 (2007).
9. P. Muhlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, Science 308, 1607 (2005).
10. G. Schider, J. R. Krenn, A. Hohenau, H. Ditlbacher, A. Leitner, F. R. Aussenegg, W. L. Schaich, I. Puscasu, B. Monacelli, and G. Boreman, Phys. Rev. B 68, 155427 (2003).
11. H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, M. Rogers, F. Hofer, F. R. Aussenegg, and J. R. Krenn, Phys. Rev. Lett. 95, 257403 (2005).
12. J. Rybczynski, K. Kempa, A. Herczynski, Y. Wang, M. J. Naughton, Z. P. Huang, D. Cai, and M. Giersig, Appl. Phys. Lett. 90, 021104 (2007).
13. Y. Peng, X. Wang, and K. Kempa, Opt. Express 16, 1758 (2008).
14. J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, Phys. Rev. B 72, 075405 (2005).
15. X. Wang and K. Kempa, Phys. Rev. B 75, 245426 (2007).
16. J. Takahara, S. Yamagishi, H. Taki, A. Morimoto, and T. Kobayashi, Opt. Lett. 22, 475 (1997).
17. S. Zhang, H. Wei, K. Bao, U. Hakanson, N. J. Halas, P. Nordlander, and H. Xu, Phys. Rev. Lett. 107, 096801 (2011).
18. X. Wang and K. Kempa, Phys. Rev. B 71, 233101 (2005).
19. A. Taflove, Computational Electrodynamics: The finite-difference time-domain method (Artech House, Norwood, MA, 1995).
20. A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, Comput. Phys. Commun. 181, 687702 (2010).
21. S. Nah, Y. Peng, C. Ropp, J. T. Fourkas, K. Kempa, E. Waks, and B. Shapiro, “Remote nanoscale photochemistry using guided, nonlinearly-generated emission in Ag nanowires” (unpublished).
22. K. Kempa, X. Wang, Z. F. Ren and M. J. Naughton, Appl. Phys. Lett. 92, 043114 (2008).

Data & Media loading...


Article metrics loading...



We study the interaction of electromagnetic waves (EM) with metallic nanowire systems for frequencies not far from the surface plasma frequency (polaritonic range). We employ calculation and simulation to show that when excited at one end with axially polarized EM waves,nanowires can function as efficient waveguides of surface plasmon polaritons (SPPs). From the Fabry-Perot resonances of standing SPP waves, we study their dispersion relation and show that for a vanishing SPP wavelength it is identical to that for a planar metallic surface.Nanowire systems can be employed in various nanophotonic applications, and we assess this potential by studying propagation characteristics of these nano-waveguides and their interactions.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd