1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
Nanoscale spin wave valve and phase shifter
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/100/17/10.1063/1.4705289
1.
1. V. V. Kruglyak, S. O. Demokritov, and D. Grundler, J. Phys. D: Appl. Phys. 43, 264001 (2010).
http://dx.doi.org/10.1088/0022-3727/43/26/264001
2.
2. A. Khitun and K. L. Wang, J. Appl. Phys. 110, 034306 (2011).
http://dx.doi.org/10.1063/1.3609062
3.
3. S. K. Kim, K. S. Lee, and D. S. Han, Appl. Phys. Lett. 95, 082507 (2009).
http://dx.doi.org/10.1063/1.3186782
4.
4. T. Schneider, A. A. Serga, B. Leven, B. Hillebrands, R. L. Stamps, and M. P. Kostylev, Appl. Phys. Lett. 92, 022505 (2008).
http://dx.doi.org/10.1063/1.2834714
5.
5. K. S. Lee and S. K. Kim, J. Appl. Phys. 104, 053909 (2008).
http://dx.doi.org/10.1063/1.2975235
6.
6. M. Bao, A. Khitun, Y. Wu, J. Y. Lee, K. L. Wang, and A. P. Jacob, Appl. Phys. Lett. 93, 072509 (2008).
http://dx.doi.org/10.1063/1.2975174
7.
7. A. Khitun, D. E. Nikonov, and K. L. Wang, J. Appl. Phys. 106, 123909 (2009).
http://dx.doi.org/10.1063/1.3267152
8.
8. E. Padron-Hernandez, A. Azevedo, and S. M. Rezende, Phys. Rev. Lett. 107, 197203 (2011).
http://dx.doi.org/10.1103/PhysRevLett.107.197203
9.
9. Y. Khivintsev, J. Marsh, V. Zagorodnii, I. Harward, J. Lovejoy, P. Krivosik, R. E. Camley, and Z. Celinski, Appl. Phys. Lett. 98, 042505 (2011).
http://dx.doi.org/10.1063/1.3541787
10.
10. V. E. Demidov, S. Urazhdin, and S. O. Demokritov, Nature Mater. 9, 984 (2010).
http://dx.doi.org/10.1038/nmat2882
11.
11. M. Madami, S. Bonetti, G. Consolo, S. Tacchi, G. Carlotti, G. Gubbiotti, F. B. Mancoff, M. A. Yar, and J. Akerman, Nature Nanotechnol. 6, 635 (2011).
http://dx.doi.org/10.1038/nnano.2011.140
12.
12. S. S. P. Parkin, M. Hayashi, and L. Thomas, Science 320, 190 (2008).
http://dx.doi.org/10.1126/science.1145799
13.
13. Y. Kajiwara, K. Harii, S. Takahashi, J. Ohe, K. Uchida, M. Mizuguchi, H. Umezawa, H. Kawai, K. Ando, K. Takanashi, S. Maekawa, and E. Saitoh, Nature 464, 262 (2010).
http://dx.doi.org/10.1038/nature08876
14.
14. K. Uchida, S. Takahashi, K. Harii, J. Ieda, W. Koshibae, K. Ando, S. Maekawa, and E. Saitoh, Nature 455, 778 (2008).
http://dx.doi.org/10.1038/nature07321
15.
15. R. Hertel, W. Wulfhekel, and J. Kirschner, Phys. Rev. Lett. 93, 257202 (2004).
http://dx.doi.org/10.1103/PhysRevLett.93.257202
16.
16. S. V. Vasiliev, V. V. Kruglyak, M. L. Sokolvskii, and A. N. Kuchko, J. Appl. Phys. 101, 113919 (2007).
http://dx.doi.org/10.1063/1.2740339
17.
17. V. E. Demidov, S. Urazhdin, and S. O. Demokritov, Appl. Phys. Lett 95, 262509 (2009).
http://dx.doi.org/10.1063/1.3279152
18.
18. Y. Au, T. Davison, E. Ahmad, P. S. Keatley, R. J. Hicken, and V. V. Kruglyak, Appl. Phys. Lett. 98, 122506 (2011).
http://dx.doi.org/10.1063/1.3571444
19.
19. Y. Au, E. Ahmad, O. Dmytriiev, M. Dvornik, T. Davison, and V. V. Kruglyak, “Resonant microwave-to-spin-wave transducer” (unpublished).
20.
20. Saturation magnetization Ms = 800 Oe, exchange stiffness A = 1.3 × 10−11 J/m, and zero magnetocrystalline anisotropy.
21.
21. M. Donahue and D. G. Porter, oommf User’s guide, Version 1.0, Interagency Report NISTIR 6376, NIST, Gaithersburg, MD, 1999.
22.
22. S. Bance, T. Schrefl, G. Hrkac, A. Goncharov, D. A. Allwood, and J. Dean, J. Appl. Phys. 103, 07E735 (2008).
http://dx.doi.org/10.1063/1.2836791
http://aip.metastore.ingenta.com/content/aip/journal/apl/100/17/10.1063/1.4705289
Loading
View: Figures

Figures

Image of FIG. 1.

Click to view

FIG. 1.

(a) Ground state of the micromagnetic structure considered. The entire box of view in (a) represents a 2200 × 600 nm region. The magnonic waveguide of 100 nm width and of 10 nm thickness is separated by 5 nm spacing from the overlaid 50 nm wide, 150 nm long, and 30 nm thick resonator. Little arrows inside the waveguide and transducer represent local magnetic moment direction. (b)–(d) Out of plane magnetization (mz) inside the waveguide (static background subtracted) at the same relative simulation time for a vertical spacing between the resonator and the waveguide kept at 5 nm and changed to 20 and 50 nm, respectively. These images were recorded after the system has attained dynamic steady state. Inset of (a): Color scale for My in (a) and m z in (b)–(d) with range of −40 to 40 Oe and −0.2 to 0.2 Oe, respectively. (e) Ground state of the same structure but with the resonator magnetization flipped to the opposite direction. (f) Waveguide mz for case of opposite magnetized resonator at the same aforementioned relative simulation time. Resonator-waveguide spacing equals 5 nm both in (e) and (f).

Image of FIG. 2.

Click to view

FIG. 2.

(a) and (b): Phase diagram of relative magnitude of the spin wave transmitted underneath the resonator measured at 200 nm in negative x direction away from the central axis of the resonator for static magnetization of the resonator pointing towards positive and negative y direction respectively. Note that α is plotted in logarithmic scale. (c) and (d): Identical to (a) and (b) but with magnitude of the spin wave replaced by oscillation phase (in radian). (e) and (f): Phase diagram of the precession magnitude of the resonator (averaged over the resonator volume) for static magnetization of the resonator pointing towards positive and negative y direction, respectively.

Image of FIG. 3.

Click to view

FIG. 3.

(a)–(d) Dipolar stray field of the resonator at relative simulation time equal 0, 0.125, 0.25, and 0.375 T (T = 1/11.5 ns), respectively. (e) Spatial Fourier transform along x direction of the stray field z component at different vertical distance from the lower surface of the resonator (vertical axis, z).

Loading

Article metrics loading...

/content/aip/journal/apl/100/17/10.1063/1.4705289
2012-04-24
2014-04-24

Abstract

We have used micromagnetic simulations to demonstrate a method for controlling the amplitude and phase of spin waves propagating inside a magnonic waveguide. The method employs a nanomagnet formed on top of a magnonic waveguide. The function of the proposed device is controlled by defining the static magnetization direction of the nanomagnet. The result is a valve or phase shifter for spin waves, acting as the carrier of information for computation or data processing within the emerging spin wave logic architectures of magnonics. The proposed concept offers such technically important benefits as energy efficiency, non-volatility, and miniaturization.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/100/17/1.4705289.html;jsessionid=3e0kop053f24o.x-aip-live-02?itemId=/content/aip/journal/apl/100/17/10.1063/1.4705289&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Nanoscale spin wave valve and phase shifter
http://aip.metastore.ingenta.com/content/aip/journal/apl/100/17/10.1063/1.4705289
10.1063/1.4705289
SEARCH_EXPAND_ITEM