Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/apl/100/17/10.1063/1.4705289
1.
1. V. V. Kruglyak, S. O. Demokritov, and D. Grundler, J. Phys. D: Appl. Phys. 43, 264001 (2010).
http://dx.doi.org/10.1088/0022-3727/43/26/264001
2.
2. A. Khitun and K. L. Wang, J. Appl. Phys. 110, 034306 (2011).
http://dx.doi.org/10.1063/1.3609062
3.
3. S. K. Kim, K. S. Lee, and D. S. Han, Appl. Phys. Lett. 95, 082507 (2009).
http://dx.doi.org/10.1063/1.3186782
4.
4. T. Schneider, A. A. Serga, B. Leven, B. Hillebrands, R. L. Stamps, and M. P. Kostylev, Appl. Phys. Lett. 92, 022505 (2008).
http://dx.doi.org/10.1063/1.2834714
5.
5. K. S. Lee and S. K. Kim, J. Appl. Phys. 104, 053909 (2008).
http://dx.doi.org/10.1063/1.2975235
6.
6. M. Bao, A. Khitun, Y. Wu, J. Y. Lee, K. L. Wang, and A. P. Jacob, Appl. Phys. Lett. 93, 072509 (2008).
http://dx.doi.org/10.1063/1.2975174
7.
7. A. Khitun, D. E. Nikonov, and K. L. Wang, J. Appl. Phys. 106, 123909 (2009).
http://dx.doi.org/10.1063/1.3267152
8.
8. E. Padron-Hernandez, A. Azevedo, and S. M. Rezende, Phys. Rev. Lett. 107, 197203 (2011).
http://dx.doi.org/10.1103/PhysRevLett.107.197203
9.
9. Y. Khivintsev, J. Marsh, V. Zagorodnii, I. Harward, J. Lovejoy, P. Krivosik, R. E. Camley, and Z. Celinski, Appl. Phys. Lett. 98, 042505 (2011).
http://dx.doi.org/10.1063/1.3541787
10.
10. V. E. Demidov, S. Urazhdin, and S. O. Demokritov, Nature Mater. 9, 984 (2010).
http://dx.doi.org/10.1038/nmat2882
11.
11. M. Madami, S. Bonetti, G. Consolo, S. Tacchi, G. Carlotti, G. Gubbiotti, F. B. Mancoff, M. A. Yar, and J. Akerman, Nature Nanotechnol. 6, 635 (2011).
http://dx.doi.org/10.1038/nnano.2011.140
12.
12. S. S. P. Parkin, M. Hayashi, and L. Thomas, Science 320, 190 (2008).
http://dx.doi.org/10.1126/science.1145799
13.
13. Y. Kajiwara, K. Harii, S. Takahashi, J. Ohe, K. Uchida, M. Mizuguchi, H. Umezawa, H. Kawai, K. Ando, K. Takanashi, S. Maekawa, and E. Saitoh, Nature 464, 262 (2010).
http://dx.doi.org/10.1038/nature08876
14.
14. K. Uchida, S. Takahashi, K. Harii, J. Ieda, W. Koshibae, K. Ando, S. Maekawa, and E. Saitoh, Nature 455, 778 (2008).
http://dx.doi.org/10.1038/nature07321
15.
15. R. Hertel, W. Wulfhekel, and J. Kirschner, Phys. Rev. Lett. 93, 257202 (2004).
http://dx.doi.org/10.1103/PhysRevLett.93.257202
16.
16. S. V. Vasiliev, V. V. Kruglyak, M. L. Sokolvskii, and A. N. Kuchko, J. Appl. Phys. 101, 113919 (2007).
http://dx.doi.org/10.1063/1.2740339
17.
17. V. E. Demidov, S. Urazhdin, and S. O. Demokritov, Appl. Phys. Lett 95, 262509 (2009).
http://dx.doi.org/10.1063/1.3279152
18.
18. Y. Au, T. Davison, E. Ahmad, P. S. Keatley, R. J. Hicken, and V. V. Kruglyak, Appl. Phys. Lett. 98, 122506 (2011).
http://dx.doi.org/10.1063/1.3571444
19.
19. Y. Au, E. Ahmad, O. Dmytriiev, M. Dvornik, T. Davison, and V. V. Kruglyak, “Resonant microwave-to-spin-wave transducer” (unpublished).
20.
20. Saturation magnetization Ms = 800 Oe, exchange stiffness A = 1.3 × 10−11 J/m, and zero magnetocrystalline anisotropy.
21.
21. M. Donahue and D. G. Porter, oommf User’s guide, Version 1.0, Interagency Report NISTIR 6376, NIST, Gaithersburg, MD, 1999.
22.
22. S. Bance, T. Schrefl, G. Hrkac, A. Goncharov, D. A. Allwood, and J. Dean, J. Appl. Phys. 103, 07E735 (2008).
http://dx.doi.org/10.1063/1.2836791
http://aip.metastore.ingenta.com/content/aip/journal/apl/100/17/10.1063/1.4705289
Loading
/content/aip/journal/apl/100/17/10.1063/1.4705289
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apl/100/17/10.1063/1.4705289
2012-04-24
2016-02-08

Abstract

We have used micromagnetic simulations to demonstrate a method for controlling the amplitude and phase of spin waves propagating inside a magnonic waveguide. The method employs a nanomagnet formed on top of a magnonic waveguide. The function of the proposed device is controlled by defining the static magnetization direction of the nanomagnet. The result is a valve or phase shifter for spin waves, acting as the carrier of information for computation or data processing within the emerging spin wave logic architectures of magnonics. The proposed concept offers such technically important benefits as energy efficiency, non-volatility, and miniaturization.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/100/17/1.4705289.html;jsessionid=lrv112tbfee5.x-aip-live-06?itemId=/content/aip/journal/apl/100/17/10.1063/1.4705289&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd