1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
A nanoimprinted, optically tuneable organic laser
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/100/17/10.1063/1.4705303
1.
1. K. Okumoto, H. Kanno, Y. Hamaa, H. Takahashi, and K. Shibata, Appl. Phys. Lett. 89, 063504 (2006).
http://dx.doi.org/10.1063/1.2266452
2.
2. I. D. W. Samuel and G. A. Turnbull, Chem. Rev. 107, 1272 (2007).
http://dx.doi.org/10.1021/cr050152i
3.
3. B. H. Soffer and B. B. McFarland, Appl. Phys. Lett. 10, 266 (1967).
http://dx.doi.org/10.1063/1.1754804
4.
4. N. Tessler, G. J. Denton, and R. H. Friend, Nature 382, 695697 (1996).
http://dx.doi.org/10.1038/382695a0
5.
5. F. Hide, M. A. Diaz-Garcia, B. J. Schwartz, M. R. Andersson, Q. Pei, and A. J. Heeger, Science 273, 1833 (1996).
http://dx.doi.org/10.1126/science.273.5283.1833
6.
6. B. H. Wallikewitz, M. de la Rosa, J. H.-W. M. Kremer, D. Hertel, and K. Meerholz, Adv. Mater. 22, 531 (2010).
http://dx.doi.org/10.1002/adma.200902451
7.
7. D. Schneider, T. Rabe, T. Riedl, T. Dobbertin, M. Kröger, E. Becker, H.-H. Johannes, W. Kowalsky, T. Weimann, J. Wang, and P. Hinze, Appl. Phys. Lett. 85, 1886 (2004).
http://dx.doi.org/10.1063/1.1791742
8.
8. C. Karnutsch, C. Gärtner, V. Haug, U. Lemmer, T. Farrell, B. S. Nehls, U. Scherf, J. Wang, T. Weimann, G. Heliotis, C. Pflumm, J. C. DeMello, and D. D. C. Bradley, Appl. Phys. Lett. 89, 201108 (2006).
http://dx.doi.org/10.1063/1.2390644
9.
9. A. Rose, Z. Zhu, F. M. Conor, T. S. Swager, and V. Bulović, Nature 434, 876 (2005).
http://dx.doi.org/10.1038/nature03438
10.
10. C. Vannahme, S. Klinkhammer, U. Lemmer, and T. Mappes, Opt. Express 19, 8179 (2011).
http://dx.doi.org/10.1364/OE.19.008179
11.
11. J. Clark and G. Lanzani, Nat. Photonics 4, 438 (2010).
http://dx.doi.org/10.1038/nphoton.2010.160
12.
12. D. Fragouli, L. Persano, G. Paladini, D. Pisignano, R. Carzino, F. Pignatelli, R. Cingolani, and A. Athanassiou, Adv. Funct. Mater. 18, 1617 (2008).
http://dx.doi.org/10.1002/adfm.200701255
13.
13. A. Athanassiou, M. Kalyva, K. Lakiotaki, S. Georgiou, and C. Fotakis, Adv. Mater. 17, 988 (2005).
http://dx.doi.org/10.1002/adma.200401078
14.
14. B. Wenger, N. Tétreault, M. E. Welland, and R. H. Friend, Appl. Phys. Lett. 97, 193303 (2010).
http://dx.doi.org/10.1063/1.3509405
15.
15. P. Görrn, M. Lehnhardt, W. Kowalsky, T. Riedl, and S. Wagner, Adv. Mater. 23, 869 (2011).
http://dx.doi.org/10.1002/adma.201003108
16.
16. S. Klinkhammer, N. Heussner, K. Huska, T. Bocksrocker, F. Geislhöringer, C. Vannahme, T. Mappes, and U. Lemmer, Appl. Phys. Lett. 99, 023307 (2011).
http://dx.doi.org/10.1063/1.3610473
17.
17. B. H. Wallikewitz, D. Hertel, and K. Meerholz, Chem. Mater. 21, 2912 (2009).
http://dx.doi.org/10.1021/cm900578h
18.
18. P. Bienstman and R. Baets, Opt. Quantum Electron. 33, 327 (2001).
http://dx.doi.org/10.1023/A:1010882531238
19.
19. D. Pisignano, E. Mele, L. Persano, A. Athanassiou, C. Fotakis, and R. Cingolani, J. Phys. Chem. B 110, 4506 (2006).
http://dx.doi.org/10.1021/jp060144l
20.
20. G. Berkovic, V. Krongauz, and V. Weiss, Chem. Rev. 100, 1741 (2000).
http://dx.doi.org/10.1021/cr9800715
21.
21. N. Tamai and H. Miyasaka, Chem. Rev. 100, 1875 (2000).
http://dx.doi.org/10.1021/cr9800816
22.
journal-id:
http://aip.metastore.ingenta.com/content/aip/journal/apl/100/17/10.1063/1.4705303
Loading
View: Figures

Figures

Image of FIG. 1.

Click to view

FIG. 1.

(a) Absorption spectra of spiropyran (solid line) and merocyanine (dashed line) of a blend consisting of 20% photochromic material and 80% PMMA. The absorption spectrum of the laser dye is shown as well (line, circle). The ASE spectrum of the laser dye (blue line, square) in the sample PMMA (79%):laser dye (1%):spiropyran (20%) peaks at λASE = 747 nm. Emission of the unexposed laser (Λ = 510 nm) made of the same material composition is found at λlaser = 746.5 nm (red line, triangle top up). Exposure of this sample for 25 min to λexp = 365 nm leads to a shift of the laser emission to λlaser = 760.5 nm (green line, triangle, top down). In (b), the chemical structure of the closed spiropyran (I) and the open merocyanine (II) form of the photochromic material is shown as well as the laser dye Rhodamine 700.

Image of FIG. 2.

Click to view

FIG. 2.

(a) Plot of the output versus excitation intensities of the DFB (Λ = 510 nm) laser PMMA (0.79%):spiropyran (20%):laser dye (1%). The laser threshold is 50 µJ/cm2 at step 1 (black square), 95 µJ/cm2 at step 2 (red dot), 140 µJ/cm2 at step 3 (blue triangle, top up), 150 µJ/cm2 at step 4 (green triangle, top down) and 190 µJ/cm2 at step 5 (grey diamond). In (b), the tuning dynamics of the laser emission upon exposure to λexp = 365 nm (filled, blue squares) and λexp = 532 nm (green, dot) for the exposure time texp are shown.

Image of FIG. 3.

Click to view

FIG. 3.

Relative intensity profile of the TE0 mode in the device quartz/PMMA (0.79%):spiropyran (20%):laser dye (1%) (line) with neff = 1.469 and of the same device after transformation of the spiropyran to the merocyanine form (dashed line) with an neff = 1.502. The refractive indices for each material are shown on the right axis.

Loading

Article metrics loading...

/content/aip/journal/apl/100/17/10.1063/1.4705303
2012-04-24
2014-04-19

Abstract

We present a means to optically tune the emission of an organic laser reversibly over a range of 14 nm. This is enabled by incorporating a photochromic spiropyran (10,30-dihydro-10,30,30-trimethyl-6-nitrospiro[2H-1-benzopyran-2,20-(2H)-indole]) into the gain medium formed by the laser dye Rhodamine 700 in poly(methyl methacrylate). This is structured by nanoimprinting to form a distributed feedback resonator. Exposure of the device to ultraviolet and visible light leads to a reversible refractive index change of the photochromic additive and the gain medium, which enables the continuous shift of the laser wavelength. This is possible without compromising the optical gain properties of the device.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/100/17/1.4705303.html;jsessionid=2bj99bbl1ajtt.x-aip-live-03?itemId=/content/aip/journal/apl/100/17/10.1063/1.4705303&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: A nanoimprinted, optically tuneable organic laser
http://aip.metastore.ingenta.com/content/aip/journal/apl/100/17/10.1063/1.4705303
10.1063/1.4705303
SEARCH_EXPAND_ITEM