1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
Negative electron mobility in diamond
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/100/17/10.1063/1.4705434
1.
1. J. B. Gunn, Solid State Commun. 1, 88 (1963).
http://dx.doi.org/10.1016/0038-1098(63)90041-3
2.
2. H. Kroemer, Proc. IEEE 52, 1736 (1964).
http://dx.doi.org/10.1109/PROC.1964.3476
3.
3. C. Hilsum, Proc. IRE 50, 185 (1962).
http://dx.doi.org/10.1109/JRPROC.1962.288025
4.
4. B. K. Ridley and T. B. Watkins, Proc. Phys. Soc. 78, 293 (1961).
http://dx.doi.org/10.1088/0370-1328/78/2/315
5.
5. C. Canali, A. Loria, F. Nava, and G. Ottaviani, Solid State Commun. 12, 1017 (1973).
http://dx.doi.org/10.1016/0038-1098(73)90027-6
6.
6. E. L. Ekimov, V. A. Sidorov, E. D. Bauer, N. N. Mel’nik, N. J. Curro, J. D. Thompson, and S. M. Stishov, Nature 428, 542 (2004).
http://dx.doi.org/10.1038/nature02449
7.
7. M. Gabrysch, S. Majdi, D. J. Twitchen, and J. Isberg, J. Appl. Phys. 109, 063719 (2011).
http://dx.doi.org/10.1063/1.3554721
8.
8. C. Canali, F. Nava, and L. Reggiani, in Topics in Applied Physics (Springer, Berlin, 1985), Vol. 58, pp. 87112.
9.
9. E. A. Schiff, R. I. Devlen, H. T. Grahn, J. Tauc, and S. Guha, Appl. Phys. Lett. 54, 1911 (1989).
http://dx.doi.org/10.1063/1.101239
10.
10. P. A. Tove and L. G. Andersson, Solid State Electron. 16, 961 (1973).
http://dx.doi.org/10.1016/0038-1101(73)90195-0
11.
11. A. G. Bates and M. Moll, Nucl. Instrum. Method Phys. Res. A 555, 113 (2005).
http://dx.doi.org/10.1016/j.nima.2005.09.020
12.
12. J. Fink, P. Lodomez, H. Krüger, H. Pernegger, P. Weilhammer, and N. Wermes, Nucl. Instrum. Method Phys. Res. A 565, 227 (2006).
http://dx.doi.org/10.1016/j.nima.2006.05.003
13.
13. L. Reggiani, S. Bosi, C. Canali, F. Nava, and S. F. Kozlov, Phys. Rev. B 23, 3050 (1981).
http://dx.doi.org/10.1103/PhysRevB.23.3050
14.
14. F. Nava, C. Canali, C. Jacoboni, L. Reggiani, and S. F. Kozlov, Solid State Commun. 33, 475 (1980).
http://dx.doi.org/10.1016/0038-1098(80)90447-0
15.
15. J. Isberg, J. Hammersberg, E. Johansson, T. Wikström, D. J. Twitchen, A. J. Whitehead, S. E. Coe, and G. A. Scarsbrook, Science 297, 1670 (2002).
http://dx.doi.org/10.1126/science.1074374
16.
16. H. Pernegger, S. Roe, P. Weilhammer, V. Eremin, H. Frais-Kölbl, E. Griesmayer, H. Kagan, S. Schnetzer, R. Stone, W. Trischuk, D. Twitchen, and A. Whitehead, J. Appl. Phys. 97, 1 (2005).
http://dx.doi.org/10.1063/1.1863417
17.
17. Y. Oshiki, J. H. Kaneko, F. Fujita, A. Homma, H. Watanabe, K. Meguro, Y. Yamamoto, T. Imai, K. Sato, K. Tsuji, S. Kawamura, and M. Furusaka, Diam. Rel. Mater. 17, 833 (2008).
http://dx.doi.org/10.1016/j.diamond.2007.12.056
18.
18. M. Nesladek, A. Bogdan, W. Deferme, N. Tranchant, and P. Bergonzo, Diam. Rel. Mater. 17, 1235 (2008).
http://dx.doi.org/10.1016/j.diamond.2008.03.015
19.
19. J. Isberg, M. Gabrysch, A. Tajani, and D. J. Twitchen, Semicond. Sci. Tech. 21, 1193 (2006).
http://dx.doi.org/10.1088/0268-1242/21/8/035
20.
20. G. Kramberger, V. Cindro, I. Mandić, M. Mikuž, M. Milovanović, M. Zavrtanik, and K. Žagar, IEEE Trans. Nucl. Sci. 57, 2294 (2010).
http://dx.doi.org/10.1109/TNS.2010.2051957
21.
21. J. Isberg, S. Majdi, M. Gabrysch, I. Friel, and R. S. Balmer, Diam. Rel. Mater. 18, 1163 (2009).
http://dx.doi.org/10.1016/j.diamond.2009.03.002
22.
22. H. Löfas, A. Grigoriev, J. Isberg, and R. Ahuja, AIP Adv. 1, 032139 (2011).
http://dx.doi.org/10.1063/1.3630932
23.
23. J. Pernot, C. Tavares, E. Gheeraert, E. Bustarret, M. Katagiri, and S. Koizumi, Appl. Phys. Lett. 89, 122111 (2006).
http://dx.doi.org/10.1063/1.2355454
24.
24. P. J. Dean, E. C. Lightowlers, and D. R. Wight, Phys. Rev. 140, A352 (1965).
http://dx.doi.org/10.1103/PhysRev.140.A352
25.
25. P. Pavone, K. Karch, O. Schutt, W. Windl, D. Strauch, P. Giannozzi, and S. Baroni, Phys. Rev. B 48, 3156 (1993).
http://dx.doi.org/10.1103/PhysRevB.48.3156
26.
26. C. J. Stanton, H. U. Baranger, and J. W. Wilkins, Appl. Phys. Lett. 49, 176 (1986).
http://dx.doi.org/10.1063/1.97216
27.
27. C. Erginsoy, Phys. Rev. 79, 1013 (1950).
http://dx.doi.org/10.1103/PhysRev.79.1013
28.
28. H. Brooks, in Advances in Electronics and Electron Physics, edited by Marton L. (Academic Press, New York, 1955), Vol. VII, p. 158.
29.
29. A. Matulionis, J. Požela, and A. Reklaitis, Solid State Commun. 16, 1133 (1975).
http://dx.doi.org/10.1016/0038-1098(75)90131-3
http://aip.metastore.ingenta.com/content/aip/journal/apl/100/17/10.1063/1.4705434
Loading

Figures

Image of FIG. 1.

Click to view

FIG. 1.

Electron drift velocity in diamond vs. electric field applied along the [100] axis for five different temperatures. The transit velocity is extracted from current traces (averaged over 50 laser shots) by identifying the time-of-flight as the FWHM of the current peak. Average of three samples, the error bars represent the scatter among the samples. Inset shows examples of measured current traces for 500 (red) and 1350 (blue) V/cm at 120 K.

Image of FIG. 2.

Click to view

FIG. 2.

The first Brillouin zone for diamond with the six conduction band valleys centered at k = 0.76 of zone boundary in the {100} directions. The blue (cool) valleys orientated along the field are preferentially populated for E > 300 V/cm.

Image of FIG. 3.

Click to view

FIG. 3.

(Top) Calculated drift velocity at 110 K for DA = 15.0 eV and Dif = Dig = 1.5 × 109 eV/cm compared with experimental data. (Bottom) Relative population of the cool valleys showing an onset of repopulation at E ≈ 300 V/cm. At E = 800 V/cm, 95% of the electrons populate the two cool valleys while the remaining 5% populate the four hot valleys.

Tables

Generic image for table

Click to view

Table I.

Summary of the findings from drift velocity measurements for T = 110–150 K.

Loading

Article metrics loading...

/content/aip/journal/apl/100/17/10.1063/1.4705434
2012-04-24
2014-04-20

Abstract

By measuring the drift velocity of electrons in diamond as a function of applied electric field, we demonstrate that ultra-pure diamond exhibits negative differential electron mobility in the [100] direction below 140 K. Negative electron mobility is normally associated with III–V or II–VI semiconductors with an energy difference between different conduction band valleys. The observation of negative mobility in diamond, an elemental group IV semiconductor, is explained in terms of repopulation effects between different equivalent conduction band valleys using a model based on the Boltzmann equation.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/100/17/1.4705434.html;jsessionid=5gvrdkna1une3.x-aip-live-03?itemId=/content/aip/journal/apl/100/17/10.1063/1.4705434&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Negative electron mobility in diamond
http://aip.metastore.ingenta.com/content/aip/journal/apl/100/17/10.1063/1.4705434
10.1063/1.4705434
SEARCH_EXPAND_ITEM