1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Cathode buffer layers based on vacuum and solution deposited poly(3,4-ethylenedioxythiophene) for efficient inverted organic solar cells
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/100/18/10.1063/1.4709481
1.
1. M. E. Alf, A. Asatekin, M. C. Barr, S. H. Baxamusa, H. Chelawat, G. Ozaydin-Ince, C. D. Petruczok, R. Sreenivasan, W. E. Tenhaeff, N. J. Trujillo, S. Vaddiraju, J. Xu, and K. K. Gleason, Adv. Mater. 22, 1993 (2010).
http://dx.doi.org/10.1002/adma.200902765
2.
2. C. Waldauf, M. Morana, P. Denk, P. Schilinsky, K. Coakley, S. A. Choulis, and C. J. Brabec, Appl. Phys. Lett. 89, 233517 (2006).
http://dx.doi.org/10.1063/1.2402890
3.
3. S. K. Hau, H.-L. Yip, J. Zou, and A. K. Y. Jen, Org. Electron. 10, 1401 (2009).
http://dx.doi.org/10.1016/j.orgel.2009.06.019
4.
4. L.-M. Chen, Z. Hong, G. Li, and Y. Yang, Adv. Mater. 21, 1434 (2009).
http://dx.doi.org/10.1002/adma.200802854
5.
5. G. Li, C. W. Chu, V. Shrotriya, J. Huang, and Y. Yang, Appl. Phys. Lett. 88, 253503 (2006).
http://dx.doi.org/10.1063/1.2212270
6.
6. V. Shrotriya, G. Li, Y. Yao, C. W. Chu, and Y. Yang, Appl. Phys. Lett. 88, 073508 (2006).
http://dx.doi.org/10.1063/1.2174093
7.
7. F. J. Zhang, D. W. Zhao, Z. L. Zhuo, H. Wang, Z. Xu, and Y. S. Wang, Sol. Energy Mater. Sol. Cells 94, 2416 (2010).
http://dx.doi.org/10.1016/j.solmat.2010.08.031
8.
8. Q. L. Song, M. L. Wang, E. G. Obbard, X. Y. Sun, X. M. Ding, X. Y. Hou, and C. M. Li, Appl. Phys. Lett. 89, 251118 (2006).
http://dx.doi.org/10.1063/1.2422911
9.
9. R. Po, C. Carbonera, A. Bernardi, and N. Camaioni, Energy Environ. Sci. 4, 285 (2011).
http://dx.doi.org/10.1039/c0ee00273a
10.
10. S. Kirchmeyer and K. Reuter, J. Mater. Chem. 15, 2077 (2005).
http://dx.doi.org/10.1039/b417803n
11.
11. S.-I. Na, S.-S. Kim, J. Jo, and D.-Y. Kim, Adv. Mater. 20, 4061 (2008).
http://dx.doi.org/10.1002/adma.200800338
12.
12. Y. H. Kim, C. Sachse, M. L. Machala, C. May, L. Mueller-Meskamp, and K. Leo, Adv. Funct. Mater. 21, 1076 (2011).
http://dx.doi.org/10.1002/adfm.201002290
13.
13. F. Nickel, A. Puetz, M. Reinhard, H. Do, C. Kayser, A. Colsmann, and U. Lemmer, Org. Electron. 11, 535 (2010).
http://dx.doi.org/10.1016/j.orgel.2009.12.009
14.
14. M. C. Barr, J. A. Rowehl, R. R. Lunt, J. Xu, A. Wang, C. M. Boyce, S. G. Im, V. Bulović, and K. K. Gleason, Adv. Mater. 23, 3500 (2011).
http://dx.doi.org/10.1002/adma.201101263
15.
15. A. Gadisa, K. Tvingstedt, S. Admassie, L. Lindell, X. Crispin, M. R. Andersson, W. R. Salaneck, and O. Inganas, Synth. Met. 156, 1102 (2006).
http://dx.doi.org/10.1016/j.synthmet.2006.07.006
16.
16. B. Winther-Jensen and F. C. Krebs, Sol. Energy Mater. Sol. Cells 90, 123 (2006).
http://dx.doi.org/10.1016/j.solmat.2005.02.004
17.
17. S. Admassie, F. L. Zhang, A. G. Manoj, M. Svensson, M. R. Andersson, and O. Inganas, Sol. Energy Mater. Sol. Cells 90, 133 (2006).
http://dx.doi.org/10.1016/j.solmat.2005.02.005
18.
18. D. A. Rider, B. J. Worfolk, K. D. Harris, A. Lalany, K. Shahbazi, M. D. Fleischauer, M. J. Brett, and J. M. Buriak, Adv. Funct. Mater. 20, 2404 (2010).
http://dx.doi.org/10.1002/adfm.201000304
19.
19. F. L. E. Jakobsson, X. Crispin, L. Lindell, A. Kanciurzewska, M. Fahlman, W. R. Salaneck, and M. Berggren, Chem. Phys. Lett. 433, 110 (2006).
http://dx.doi.org/10.1016/j.cplett.2006.11.007
20.
20. L. Lindell, A. Burquel, F. L. E. Jakobsson, V. Lemaur, M. Berggren, R. Lazzaroni, J. Cornil, W. R. Salaneck, and X. Crispin, Chem. Mater. 18, 4246 (2006).
http://dx.doi.org/10.1021/cm061081m
21.
21. H.-H. Liao, L.-M. Chen, Z. Xu, G. Li, and Y. Yang, Appl. Phys. Lett. 92, 173303 (2008).
http://dx.doi.org/10.1063/1.2918983
22.
22. S. G. Im, K. K. Gleason, and E. A. Olivetti, Appl. Phys. Lett. 90, 152112 (2007).
http://dx.doi.org/10.1063/1.2721376
23.
23. D. Fujishima, H. Kanno, T. Kinoshita, E. Maruyama, M. Tanaka, M. Shirakawa, and K. Shibata, Sol. Energy Mater. Sol. Cells 93, 1029 (2009).
http://dx.doi.org/10.1016/j.solmat.2008.11.034
24.
24. L. A. A. Pettersson, L. S. Roman, and O. Inganas, J. Appl. Phys. 86, 487 (1999).
http://dx.doi.org/10.1063/1.370757
25.
25. W. Osikowicz, X. Crispin, C. Tengstedt, L. Lindell, T. Kugler, and W. R. Salaneck, Appl. Phys. Lett. 85, 1616 (2004).
http://dx.doi.org/10.1063/1.1785873
26.
26. J. S. Huang, P. F. Miller, J. S. Wilson, A. J. de Mello, J. C. de Mello, and D. D. C. Bradley, Adv. Funct. Mater. 15, 290 (2005).
http://dx.doi.org/10.1002/adfm.200400073
27.
27. J. S. Kim, B. Lagel, E. Moons, N. Johansson, I. D. Baikie, W. R. Salaneck, R. H. Friend, and F. Cacialli, Synth. Met. 111, 311 (2000).
http://dx.doi.org/10.1016/S0379-6779(99)00354-9
28.
28. P. R. Brown, R. R. Lunt, N. Zhao, T. P. Osedach, D. D. Wanger, L.-Y. Chang, M. G. Bawendi, and V. Bulović, Nano Lett. 11, 2955 (2011).
http://dx.doi.org/10.1021/nl201472u
29.
29. J. Meyer, A. Shu, M. Kroeger, and A. Kahn, Appl. Phys. Lett. 96, 13308 (2010).
http://dx.doi.org/10.1063/1.3374333
30.
journal-id:
http://aip.metastore.ingenta.com/content/aip/journal/apl/100/18/10.1063/1.4709481
Loading
View: Figures

Figures

Image of FIG. 1.

Click to view

FIG. 1.

(a) Work function of both PEDOT:PSS and CVD PEDOT treated with TDAE or Cs2CO3. (b) Schematic of the inverted device architecture with transparent ITO cathode and low work function PEDOT buffer layer inserted between ITO/C60 interfaces. (c) Flat band energy level diagram for the inverted device architecture. The top-right inset shows the proposed electron-limiting Schottky barrier formed at an unbuffered ITO/C60 interface. Band energies are taken from the literature.

Image of FIG. 2.

Click to view

FIG. 2.

J-V curves under AM1.5 G simulated solar illumination. (a) Comparison of the conventional device orientation (ITO/MoO3 20 nm/DBP 25 nm/C60 40 nm/Ag) (open diamonds) with the same device stack inverted (ITO cathode) with no buffer layer on the ITO (open squares), and with untreated PEDOT layers on the ITO (filled triangles—CVD PEDOT, filled circles—PEDOT:PSS). (b) The same inverted device structure incorporating a LWF PEDOT buffer layer on the ITO cathode: CVD PEDOT/TDAE (filled triangles), CVD PEDOT/Cs2CO3 (open triangles), PEDOT:PSS/TDAE (filled circles), and PEDOT:PSS/Cs2CO3 (open circles).

Image of FIG. 3.

Click to view

FIG. 3.

Power conversion efficiency, ηp (filled triangles), open-circuit voltage (filled circles), fill-factor (filled diamonds), and short-circuit current (filled squares) as a function of the DBP electron donor layer thickness for the inverted device with PEDOT:PSS/TDAE buffer layer. The dashed lines show short-circuit current vs. DBP thickness calculated from optical interference simulations using DBP exciton diffusion lengths from 5 to 20 nm (as noted). The control cell in the conventional orientation (ITO/MoO3 20 nm/DBP 25 nm/C60 40 nm/Ag) is included as x = 0 for reference (open symbols). Solid lines are to guide the eyes.

Loading

Article metrics loading...

/content/aip/journal/apl/100/18/10.1063/1.4709481
2012-04-30
2014-04-16

Abstract

Vacuum and solution processed versions of poly(3,4-ethylenedioxythiophene) (PEDOT) are used as cathode interlayers in inverted organic photovoltaic cells comprising tetraphenyldibenzoperiflanthene as the electron donor and C60 as the electron acceptor. Chemical treatment of the as-deposited PEDOT layers with tetrakis(dimethylamino)ethylene or cesium carbonate reduces the work function by up to 0.8 eV. Inserting these PEDOT layers at the indium tin oxide cathode results in improved electron collection and efficiencies of up to 2.3 ± 0.2%, approaching the 3.2 ± 0.3% of the conventional device. This illustrates the potential for efficient polymercathode materials and inverted device architectures compatible with either solution or vacuum processing.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/100/18/1.4709481.html;jsessionid=274vt9ojhxu18.x-aip-live-01?itemId=/content/aip/journal/apl/100/18/10.1063/1.4709481&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Cathode buffer layers based on vacuum and solution deposited poly(3,4-ethylenedioxythiophene) for efficient inverted organic solar cells
http://aip.metastore.ingenta.com/content/aip/journal/apl/100/18/10.1063/1.4709481
10.1063/1.4709481
SEARCH_EXPAND_ITEM