1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
oa
Resonant microwave-to-spin-wave transducer
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/100/18/10.1063/1.4711039
1.
1. A. G. Gurevich and G. A. Melkov, Magnetization Oscillations and Waves (Chem. Rubber Corp., New York, 1996).
2.
2. D. B. Chrisey, P. C. Dorsey, J. D. Adam, and H. Buhay, Handbook of Thin Film Devices, Volume 4, Microwave Magnetic Film Devices (Academic, 2000).
3.
3. A. A. Serga, A. V. Chumak, and B. Hillebrands, J. Phys. D: Appl. Phys. 43, 264002 (2010), and references therein.
http://dx.doi.org/10.1088/0022-3727/43/26/264002
4.
4. S. V. Vasiliev, V. V. Kruglyak, M. L. Sokolvskii, and A. N. Kuchko, J. Appl. Phys. 101, 113919 (2007).
http://dx.doi.org/10.1063/1.2740339
5.
5. S. A. Manuilov, R. Fors, S. I. Khartsev, and A. M. Grishin, J. Appl. Phys. 105, 033917 (2009).
http://dx.doi.org/10.1063/1.3075816
6.
6. J. Ding, M. Kostylev, and A. O. Adeyeye, Appl. Phys. Lett. 100, 073114 (2012).
http://dx.doi.org/10.1063/1.3687177
7.
7. A. Khitun, J. Appl. Phys. 111, 054307 (2012).
http://dx.doi.org/10.1063/1.3689011
8.
8. K. S. Lee and S. K. Kim, J. Appl. Phys. 104, 053909 (2008).
http://dx.doi.org/10.1063/1.2975235
9.
9. T. Schneider, A. A. Serga, B. Leven, B. Hillebrands, R. L. Stamps, and M. P. Kostylev, Appl. Phys. Lett. 92, 022505 (2008).
http://dx.doi.org/10.1063/1.2834714
10.
10. K. S. Lee, D. S. Han, and S. K. Kim, Phys. Rev. Lett. 102, 127202 (2009).
http://dx.doi.org/10.1103/PhysRevLett.102.127202
11.
11. Y. Kajiwara, K. Harii, S. Takahashi, J. Ohe, K. Uchida, M. Mizuguchi, H. Umezawa, H. Kawai, K. Ando, K. Takanashi, S. Maekawa, and E. Saitoh, Nature (London) 464, 262 (2010).
http://dx.doi.org/10.1038/nature08876
12.
12. Y. Nakashima, K. Nagai, T. Tanaka, and K. Matsuyama, J. Appl. Phys. 109, 07D318 (2011).
http://dx.doi.org/10.1063/1.3549438
13.
13. V. V. Kruglyak, S. O. Demokritov, and D. Grundler, J. Phys. D: Appl. Phys. 43, 264001 (2010), and references therein.
http://dx.doi.org/10.1088/0022-3727/43/26/264001
14.
14. H. Al-Wahsh, A. Akjouj, B. Djafari-Rouhani, and L. Dobrzynski, Surf. Sci. Rep. 66, 29 (2011), and references therein.
http://dx.doi.org/10.1016/j.surfrep.2010.10.002
15.
15. B. Lenk, H. Ulrichs, F. Garbs, and M. Münzenberg, Phys. Rep. 507, 107 (2011), and references therein.
http://dx.doi.org/10.1016/j.physrep.2011.06.003
16.
16. S. Neusser, G. Dürr, S. Tacchi, M. Madami, M. L. Sokolovskyy, G. Gubbiotti, M. Krawczyk, and D. Grundler, Phys. Rev. B 84, 094454 (2011).
http://dx.doi.org/10.1103/PhysRevB.84.094454
17.
17. V. E. Demidov, M. P. Kostylev, K. Rott, J. Münchenberger, G. Reiss, and S. O. Demokritov, Appl. Phys. Lett. 99, 082507 (2011).
http://dx.doi.org/10.1063/1.3631756
18.
18. E. Schlömann, J. Appl. Phys. 35, 159 (1964).
http://dx.doi.org/10.1063/1.1713058
19.
19. Y. V. Gulyaev, P E. Zilberman, E. S. Sannikov, V. V. Tikhonov, and A. V. Tolkachev, Pis’ma Zh. Tekh. Fiz. 14, 884 (1988).
20.
20. Y. Au, T. Davison, E. Ahmad, P. S. Keatley, R. J. Hicken, and V. V. Kruglyak, Appl. Phys. Lett. 98, 122506 (2011).
http://dx.doi.org/10.1063/1.3571444
21.
21. P. Mühlschlegel, H. J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, Science 308, 1607 (2005).
http://dx.doi.org/10.1126/science.1111886
22.
22. N. I. Polushkin, Phys. Rev. Lett. 103, 077201 (2009).
http://dx.doi.org/10.1103/PhysRevLett.103.077201
23.
23. G. Gubbiotti, S. Tacchi, G. Carlotti, T. Ono, Y. Rousigné, V. S. Tiberkevich, and A. N. Slavin, J. Phys.: Condens. Matter 19, 246221 (2007).
http://dx.doi.org/10.1088/0953-8984/19/24/246221
24.
24. S. Bance, T. Schrefl, G. Hrkac, A. Goncharov, D. A. Allwood, and J. Dean, J. Appl. Phys. 103, 07E735 (2008).
http://dx.doi.org/10.1063/1.2836791
25.
25. M. Donahue and D. G. Porter, “ OOMMF User’s guide, Version 1.0,” Interagency Report NISTIR 6376, NIST, Gaithersburg, MD, 1999.
26.
26. M. Dvornik and V. V. Kruglyak, Phys. Rev. B 84, 140405 (2011).
http://dx.doi.org/10.1103/PhysRevB.84.140405
27.
27. C. W. Sandweg, Y. Kajiwara, A. V. Chumak, A. A. Serga, V. I. Vasyuchka, M. B. Jungfleisch, E. Saitoh, and B. Hillebrands, Phys. Rev. Lett. 106, 216601 (2011).
http://dx.doi.org/10.1103/PhysRevLett.106.216601
28.
28. V. Vlaminck and M. Bailleul, Phys. Rev. B 81, 014425 (2010).
http://dx.doi.org/10.1103/PhysRevB.81.014425
http://aip.metastore.ingenta.com/content/aip/journal/apl/100/18/10.1063/1.4711039
Loading
/content/aip/journal/apl/100/18/10.1063/1.4711039
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apl/100/18/10.1063/1.4711039
2012-05-02
2014-12-26

Abstract

We use time resolved scanning Kerr microscopy and analytical and numerical calculations to demonstrate coupling of uniform global microwave field to propagating spin waves for emerging magnonic architectures. The coupling is mediated by the local dynamic dipolar field produced by the magnetization of a resonantly driven all-metallic magnetic microwave-to-spin-wave transducer. The local dipolar field can exceed that of the incident microwave field by one order of magnitude. Our numerical simulations demonstrate the ability of the transducer to unidirectionally emit coherent exchange spin waves of nanoscale wavelengths with the emission direction programmed by the magnetic state of the transducer.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/100/18/1.4711039.html;jsessionid=58bdg31clg2tc.x-aip-live-02?itemId=/content/aip/journal/apl/100/18/10.1063/1.4711039&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Resonant microwave-to-spin-wave transducer
http://aip.metastore.ingenta.com/content/aip/journal/apl/100/18/10.1063/1.4711039
10.1063/1.4711039
SEARCH_EXPAND_ITEM