1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
Enhancement of x-rays generated by a guided laser wakefield accelerator inside capillary tubes
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/100/19/10.1063/1.4712594
1.
1. A. Rousse, K. Ta Phuoc, R. Shah, A. Pukhov, E. Lefebvre, V. Malka, S. Kiselev, F. Burgy, J.-P. Rousseau, D. Umstadter, and D. Hulin, Phys. Rev. Lett. 93, 135005 (2004).
http://dx.doi.org/10.1103/PhysRevLett.93.135005
2.
2. E. Esarey, B. A. Shadwick, P. Catravas, and W. P. Leemans, Phys. Rev. E 65, 056505 (2002).
http://dx.doi.org/10.1103/PhysRevE.65.056505
3.
3. K. Ta phuoc, R. Fitour, A. Tafzi, T. Garl, N. Artemiev, R. Shah, F. Albert, D. Boschetto, A. Rousse, D.-E. Kim, A. Pukhov, V. Seredov, and I. Kostyukov, Phys. Plasmas 14, 080701 (2007).
http://dx.doi.org/10.1063/1.2754624
4.
4. S. Kneip, C. McGuffey, F. Dollar, M. S. Bloom, V. Chvykov, G. Kalintchenlko, K. Krushelnick, A. Maksimchuk, S. P. D. Mangles, T. Matsuoka, Z. Najmudin, C. A. J. Palmer, J. Schreiber, W. Schumaker, A. G. R. Thomas, and V. Yanovsky, Appl. Phys. Lett. 99, 093701 (2011).
http://dx.doi.org/10.1063/1.3627216
5.
5. S. Fourmaux, S. Corde, K. Ta Phuoc, P. Lassonde, G. Lebrun, S. Payeur, F. Martin, S. Sebban, V. Malka, A. Rousse, and J. C. Kieffer, Opt. Lett. 36, 2426 (2011).
http://dx.doi.org/10.1364/OL.36.002426
6.
6. R. C. Shah, F. Albert, K. Ta Phuoc, O. Shevchenko, D. Boschetto, A. Pukhov, S. kiselev, F. Burgy, J.-P. Rousseau, and A. Rousse, Phys. Rev. E 74, 045401R (2006).
http://dx.doi.org/10.1103/PhysRevE.74.045401
7.
7. S. Fourmaux, S. Corde, K. Ta Phuoc, P. M. Leguay, S. Payeur, P. Lassonde, S. Gnedyuk, G. Lebrun, C. Fourment, V. Malka, S. Sebban, A. Rousse, and J. C. Kieffer, New J. Phys. 13, 033017 (2011).
http://dx.doi.org/10.1088/1367-2630/13/3/033017
8.
8. S. P. D. Mangles, G. Genoud, S. Kneip, M. Burza, K. Cassou, B. Cros, N. P. Dover, C. Kamperidis, Z. Najmudin, A. Persson, J. Schreiber, F. Wojda, and C.-G. Wahlström, Appl. Phys. Lett. 95, 181106 (2009).
http://dx.doi.org/10.1063/1.3258022
9.
9. K. Ta Phuoc, E. Esarey, V. Leurent, E. Cormier-Michel, C. G. R. Geddes, C. B. Schroeder, A. Rousse, and W. P. Leemans, Phys. Plasmas 15, 063102 (2008).
http://dx.doi.org/10.1063/1.2918657
10.
10. A. G. R. Thomas, Phys. Plasmas 17, 056708 (2010).
http://dx.doi.org/10.1063/1.3368678
11.
11. S. Kneip, S. R. Nagel, C. Bellei, N. Bourgeois, A. E. Dangor, A. Gopal, R. Heathcote, S. P. D. Mangles, J. R. Marquès, A. Maksimchuk, P. M. Nilson, K. Ta Phuoc, S. Reed, M. Tzoufras, F. S. Tsung, L. Willingale, W. B. Mori, A. Rousse, K. Krushelnick, and Z. Najmudin, Phys. Rev. Lett. 100, 105006 (2008).
http://dx.doi.org/10.1103/PhysRevLett.100.105006
12.
12. G. Genoud, K. Cassou, F. Wojda, H. E. Ferrari, C. Kamperidis, M. Burza, A. Persson, J. Uhlig, S. Kneip, S. P. D. Mangles, A. Lifschitz, B. Cros, and C.-G. Wahlström, Appl. Phys. B 105, 309 (2011).
http://dx.doi.org/10.1007/s00340-011-4639-4
13.
13. H. E. Ferrari, A. F. Lifschitz, G. Maynard, and B. Cros, Phys. Plasmas 18, 083108 (2011).
http://dx.doi.org/10.1063/1.3624771
14.
14. Y. Glinec, J. Faure, A. Guemnie-Tafo, V. Malka, H. Monard, J. P. Larbre, V. De Waele, J. L. Marignier, and M. Mostafavi, Rev. Sci. Instrum. 77, 103301 (2006).
http://dx.doi.org/10.1063/1.2360988
15.
15. F. Albert, R. Shah, K. Ta Phuoc, R. Fitour, F. Burgy, J.-P. Rousseau, A. Tafzi, D. Douillet, T. Lefrou, and A. Rousse, Phys. Rev. E 77, 056402 (2008).
http://dx.doi.org/10.1103/PhysRevE.77.056402
16.
16. H. E. Ferrari, A. Lifschitz, and B. Cros, Plasma Phys. Controlled Fusion 53, 014005 (2011).
http://dx.doi.org/10.1088/0741-3335/53/1/014005
http://aip.metastore.ingenta.com/content/aip/journal/apl/100/19/10.1063/1.4712594
Loading
View: Figures

Figures

Image of FIG. 1.

Click to view

FIG. 1.

Single shot raw Lanex images, energy spectra, and x-ray beam images obtained after a 10 mm long, 178 µm diameter capillary tube for two values of the plasma electron density: (a)–(c) cm−3; (d)–(f) cm−3.

Image of FIG. 2.

Click to view

FIG. 2.

X-ray fluence as a function of the plasma electron density for (a) a 10 mm long, 178 µm diameter capillary and (b) a 20 mm long, 152 µm diameter capillary; the other parameters are the same as for Fig. 1.

Image of FIG. 3.

Click to view

FIG. 3.

(a) X-ray fluence, (b) mean energy, and (c) charge of electrons as a function of plasma density for the 10 mm long capillary (red squares) and the 2 mm gas jet (blue dots).

Loading

Article metrics loading...

/content/aip/journal/apl/100/19/10.1063/1.4712594
2012-05-09
2014-04-16

Abstract

Electrons accelerated in the nonlinear regime in a laser wakefield accelerator experience transverse oscillations inside the plasma cavity, giving rise to ultra-short pulsed x-rays, also called the betatronradiation. We show that the fluence of x-ray can be enhanced by more than one order of magnitude when the laser is guided by a 10 mm long capillary tube instead of interacting with a 2 mm gas jet. X-rays with a synchrotron-like spectrum and associated critical energy keV, with a peak brightness of ph/s/mm2/mrad2/0.1%BW, were achieved by employing 16 TW laser pulses.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/100/19/1.4712594.html;jsessionid=534ap5gj8g2tr.x-aip-live-02?itemId=/content/aip/journal/apl/100/19/10.1063/1.4712594&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Enhancement of x-rays generated by a guided laser wakefield accelerator inside capillary tubes
http://aip.metastore.ingenta.com/content/aip/journal/apl/100/19/10.1063/1.4712594
10.1063/1.4712594
SEARCH_EXPAND_ITEM