1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
Flexible thin-film InAs/GaAs quantum dot solar cells
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/100/19/10.1063/1.4712597
1.
1. A. Luque and A. Marti, Phys. Rev. Lett. 78, 5014 (1997);
http://dx.doi.org/10.1103/PhysRevLett.78.5014
1. A. J. Nozik, Physica E 14, 115 (2002);
http://dx.doi.org/10.1016/S1386-9477(02)00374-0
1. T. Nozawa and Y. Arakawa, Appl. Phys. Lett. 98, 171108 (2011).
http://dx.doi.org/10.1063/1.3583587
2.
2. J. M. Luther, M. Law, M. C. Beard, Q. Song, M. O. Reese, R. J. Ellingson, and A. J. Nozik, Nano Lett. 8, 3488 (2008);
http://dx.doi.org/10.1021/nl802476m
2. G. Konstantatos and E. H. Sargent, Nat. Nanotechnol. 5, 391 (2010).
http://dx.doi.org/10.1038/nnano.2010.78
3.
3. S. M. Hubbard, C. D. Cress, C. G. Bailey, R. P. Raffaelle, S. G. Bailey, and D. M. Wilt, Appl. Phys. Lett. 92, 123512 (2008);
http://dx.doi.org/10.1063/1.2903699
3. D. Guimard, R. Morihara, D. Bordel, K. Tanabe, Y. Wakayama, M. Nishioka, and Y. Arakawa, Appl. Phys. Lett. 96, 203507 (2010);
http://dx.doi.org/10.1063/1.3427392
3. C. G. Bailey, D. V. Forbes, R. P. Raffaelle, and S. M. Hubbard, Appl. Phys. Lett. 98, 163105 (2011);
http://dx.doi.org/10.1063/1.3580765
3. K. A. Sablon, J. W. Little, V. Mitin, A. Sergeev, N. Vagidov, and K. Reinhardt, Nano Lett. 11, 2311 (2011).
http://dx.doi.org/10.1021/nl200543v
4.
4. J. Yoon, A. J. Baca, S.-I. Park, P. Elvikis, J. B. Geddes III, L. Li, R. H. Kim, J. Xiao, S. Wang, T.-H. Kim, M. J. Motala, B. Y. Ahn, E. B. Duoss, J. A. Lewis, R. G. Nuzzo, P. M. Ferreira, Y. Huang, A. Rockett, and J. A. Rogers, Nature Mater. 7, 907 (2008);
http://dx.doi.org/10.1038/nmat2287
4. G. Konstantatos, L. Levina, J. Tang, and E. H. Sargent, Nano Lett. 8, 4002 (2008);
http://dx.doi.org/10.1021/nl802600z
4. J. Yoon, L. Li, A. V. Semichaevsky, J. H. Ryu, H. T. Johnson, R. G. Nuzzo, and J. A. Rogers, Nature Commun. 2, 343 (2011).
http://dx.doi.org/10.1038/ncomms1318
5.
5. M. Konagai, M. Sugimoto, and K. Takahashi, J. Cryst. Growth 45, 277 (1978).
http://dx.doi.org/10.1016/0022-0248(78)90449-9
6.
6. K. Tanabe, A. Fontcuberta i Morral, H. A. Atwater, D. J. Aiken, and M. W. Wanlass, Appl. Phys. Lett. 89, 102106 (2006);
http://dx.doi.org/10.1063/1.2347280
6. K. Tanabe, D. Guimard, D. Bordel, S. Iwamoto, and Y. Arakawa, Opt. Express 18, 10604 (2010);
http://dx.doi.org/10.1364/OE.18.010604
6. K. Tanabe, K. Watanabe, and Y. Arakawa, Sci. Rep. 2, 349 (2012).
http://dx.doi.org/10.1038/srep00349
7.
7. J. M. Zahler, K. Tanabe, C. Ladous, T. Pinnington, F. D. Newman, and H. A. Atwater, Appl. Phys. Lett. 91, 012108 (2007).
http://dx.doi.org/10.1063/1.2753751
8.
8. K. Tanabe, M. Nomura, D. Guimard, S. Iwamoto, and Y. Arakawa, Opt. Express 17, 7036 (2009).
http://dx.doi.org/10.1364/OE.17.007036
9.
9. R. B. Bergmann, Appl. Phys. A 69, 187 (1999);
http://dx.doi.org/10.1007/s003390050989
9. R. Brendel, Jpn. J. Appl. Phys., Part 1 40, 4431 (2001).
http://dx.doi.org/10.1143/JJAP.40.4431
10.
10. E. Yablonovitch, T. Gmitter, J. P. Harbison, and R. Bhat, Appl. Phys. Lett. 51, 2222 (1987).
http://dx.doi.org/10.1063/1.98946
11.
11. M. Bruel, Electron. Lett. 31, 1201 (1995);
http://dx.doi.org/10.1049/el:19950805
11. P. Chen, Y. Jing, S. S. Lau, D. Xu, L. Mawst, T. L. Alford, C. Paulson, and T. F. Kuech, Appl. Phys. Lett. 92, 092107 (2008);
http://dx.doi.org/10.1063/1.2890494
11. W. Chen, P. Chen, J. E. Pulsifer, T. L. Alford, T. F. Kuech, and S. S. Lau, Appl. Phys. Lett. 92, 212109 (2008).
http://dx.doi.org/10.1063/1.2937409
http://aip.metastore.ingenta.com/content/aip/journal/apl/100/19/10.1063/1.4712597
Loading
/content/aip/journal/apl/100/19/10.1063/1.4712597
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apl/100/19/10.1063/1.4712597
2012-05-08
2014-07-31

Abstract

Thin-film InAs/GaAs quantum dot(QD)solar cells on mechanically flexible plastic films are fabricated. A 4.1-μm-thick compound semiconductorphotovoltaic layer grown on a GaAs substrate is transferred onto a plastic film through a low-temperature bonding technique. We also fabricatethin-film InAs/GaAs quantum dotsolar cells on Si substrates, as alternative low-cost, lightweight, robust substrates. The open-circuit voltages of the thin-filmcells on plastic and Si substrates are equal to that of the as-grown bulk cell on a GaAs substrate, indicating that no material degradation occurs during our bond-and-transfer process.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/100/19/1.4712597.html;jsessionid=ev3egnq2emos.x-aip-live-02?itemId=/content/aip/journal/apl/100/19/10.1063/1.4712597&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Flexible thin-film InAs/GaAs quantum dot solar cells
http://aip.metastore.ingenta.com/content/aip/journal/apl/100/19/10.1063/1.4712597
10.1063/1.4712597
SEARCH_EXPAND_ITEM