1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Topological asymmetry induced electronic transport in three terminal graphene nanoribbon structure
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/100/19/10.1063/1.4714506
1.
1. A. N. Andriotis, E. Richter, and M. Menon, Appl. Phys. Lett. 91, 152105 (2007).
http://dx.doi.org/10.1063/1.2798593
2.
2. G. G. Naumis, M. Terrones, H. Terrones, and L. M. Gaggero-Sager, Appl. Phys. Lett. 95, 182104 (2009).
http://dx.doi.org/10.1063/1.3257731
3.
3. Q.-F. Sun and X. C. Xie, Phys. Rev. Lett. 104, 066805 (2010).
http://dx.doi.org/10.1103/PhysRevLett.104.066805
4.
4. B. Özyilmaz, P. Jarillo-Herrero, D. Efetov, and P. Kim, Appl. Phys. Lett. 91, 192107 (2007).
http://dx.doi.org/10.1063/1.2803074
5.
5. T. Low, H. Seokmin, J. Appenzeller, S. Datta, and M. S. Lundstrom, IEEE Trans. Electron Dev. 56(6), 1292 (2009).
http://dx.doi.org/10.1109/TED.2009.2017646
6.
6. M. Yamamoto and K. Wakabayashi, Appl. Phys. Lett. 95, 082109 (2009).
http://dx.doi.org/10.1063/1.3206915
7.
7. Y. Ping Chen, Y. E. Xie, L. Z. Sun, and J. Zhong, Appl. Phys. Lett. 93, 092104 (2008).
http://dx.doi.org/10.1063/1.2978246
8.
8. A. Cresti, N. Nemec, B. Biel, G. Niebler, F. Triozon, G. Cuniberti, and S. Roche, Nano Res. 1, 361 (2008).
http://dx.doi.org/10.1007/s12274-008-8043-2
9.
9. M. Büttiker and M. Moskalets, Lect. Notes Phys. 690, 33 (2006).
http://dx.doi.org/10.1007/3-540-34273-7_5
10.
10. M. Büttiker, H. Thomas, A. Prêtre: Z. Phys. B 94, 133 (1994).
http://dx.doi.org/10.1007/BF01307664
11.
11. V. Gasparian, T. Christen, and M. Büttiker, Phys. Rev. A 54, 4022 (1996).
http://dx.doi.org/10.1103/PhysRevA.54.4022
12.
12. F. Sols, M. Macucci, U. Ravaioli, and K. Hess, Appl. Phys. Lett. 54, 350 (1989).
http://dx.doi.org/10.1063/1.100966
13.
13. M. Büttiker, J. Phys.: Condens. Matter 5, 9361 (1993).
http://dx.doi.org/10.1088/0953-8984/5/50/017
14.
14. T. Gramespacher and M. Büttiker, Phys. Rev. B 56, 13026 (1997).
http://dx.doi.org/10.1103/PhysRevB.56.13026
15.
15. F. Muñoz-Rojas, D. Jacob, J. Fernández-Rossier, and J. J. Palacios, Phys. Rev. B 74, 195417 (2006).
http://dx.doi.org/10.1103/PhysRevB.74.195417
16.
journal-id:
http://aip.metastore.ingenta.com/content/aip/journal/apl/100/19/10.1063/1.4714506
Loading
View: Figures

Figures

Image of FIG. 1.

Click to view

FIG. 1.

The asymmetric T-shaped structure composed of graphene nanoribbons, the widths of zigzag and armchair ribbons are and . The insets present the unit cell of the aGNR (zGNR) with (). The numbers around the dotted box indicate coupling positions of two neighboring ribbons.

Image of FIG. 2.

Click to view

FIG. 2.

The imaginary part of admittance as a function of electron energy E for asymmetric T-GNR with and . The solid and dashed lines are emittances and , respectively. The inset is dc transmission.

Image of FIG. 3.

Click to view

FIG. 3.

The distributions of (a) Local density of states, and (b) local partial densities of states.

Image of FIG. 4.

Click to view

FIG. 4.

DOS on sublattices A and B. Slices 1, 8, and 15 represent the positions (or distance) to the interfaces of the semi-infinite armchair ribbon and the intersection region. Solid lines are DOS for the left armchair ribbon and the dashed lines for the right armchair ribbon.

Image of FIG. 5.

Click to view

FIG. 5.

(a) The internal potential distributions . (b) The charge distribution in the asymmetric T-GNR structure.

Image of FIG. 6.

Click to view

FIG. 6.

The emittance for the asymmetric T-GNR as a function of (a) the width with fixed , 11, (b) the width with fixed , 11, (c) the widths and ( for is an even) or ( and n is the residue of m/4) at E = 0.01. The solid and dashed lines represent emittance and , respectively.

Loading

Article metrics loading...

/content/aip/journal/apl/100/19/10.1063/1.4714506
2012-05-10
2014-04-20

Abstract

Topological configurations play an important role in graphenenanoribbon based devices. In this work, the Büttiker’s ac transport theory is used to study an asymmetric three terminal graphenenanoribbonstructure. With the help of Green’s function and related parameters, we show that the topological asymmetries can form capacitive and inductive junctions in this three terminal structure. The transport properties are sensitive to the geometric features of the branches of the junctions and the coupling positions. It is believed that this kind of structure can be useful for the future nanoelectronic devices.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/100/19/1.4714506.html;jsessionid=1fb1k279mxnio.x-aip-live-01?itemId=/content/aip/journal/apl/100/19/10.1063/1.4714506&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Topological asymmetry induced electronic transport in three terminal graphene nanoribbon structure
http://aip.metastore.ingenta.com/content/aip/journal/apl/100/19/10.1063/1.4714506
10.1063/1.4714506
SEARCH_EXPAND_ITEM