1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
A universal noncontact flowmeter for liquids
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/100/19/10.1063/1.4714899
1.
1. C. Tropea, A. L. Yarin, and J. F. Foss, Handbook of Experimental Fluid Mechanics (Springer-Verlag, GmbH, 2007).
2.
2. R. C. Baker, An Introductory Guide to Flow Measurement (Wiley Verlag, 2002).
3.
3. J. A. Shercliff, Electromagnetic Flow Measurement (Cambridge University Press, 1962).
4.
4. D. Bonn, S. Rodts, M. Groenink, S. Rafai, N. Shahidzadeh-Bonn, and P. Coussot, Annu. Rev. Fluid Mech. 40, 209233 (2008).
http://dx.doi.org/10.1146/annurev.fluid.40.111406.102211
5.
5. U. Herrmann, B. Kelly, and H. Price, Energy 29, 883893 (2004).
http://dx.doi.org/10.1016/S0360-5442(03)00193-2
6.
6. C. W. Forsberg, P. F. Peterson, and P. S. Pickard, Nucl. Technol. 144, 289 (2003).
7.
7. U. Lange and H. Loch, “Instabilities and stabilization of glass pipe flow” in Mathematical Simulation in Glass Technology, Schott Series on Glass and Glass Ceramics, edited by D. Krause and H. Loch (Springer Verlag, 2002).
8.
8. A. Thess, E. Votyakov, and Y. Kolesnikov, Phys. Rev Lett. 96, 164501 (2006).
http://dx.doi.org/10.1103/PhysRevLett.96.164501
9.
9. Y. Kolesnikov, C. Karcher, and A. Thess, Metall. Mater. Trans. B 42, 441450 (2011).
http://dx.doi.org/10.1007/s11663-011-9477-6
10.
10. H. Cavendish, Philos. Trans. R. Soc. London 88, 469526 (1798).
http://dx.doi.org/10.1098/rstl.1798.0022
11.
11. G. G. Luther and W. R. Towler, Phys. Rev. Lett. 48(3), 121123 (1982).
http://dx.doi.org/10.1103/PhysRevLett.48.121
12.
12. S. Schlamminger, M. Holzschuh, W. Kündig, F. Nolting, R. E. Pixley, J. Schurr, and U. Straumann, Phys. Rev. D 74, 082001 (2006).
http://dx.doi.org/10.1103/PhysRevD.74.082001
13.
13. J. Luo, Q. Liu, L. C. Tu, C. G. Shao, L. X. Liu, S. Q. Yang, Q. Li, and Y. T. Zhang, Phys. Rev. Lett. 102, 240801 (2009).
http://dx.doi.org/10.1103/PhysRevLett.102.240801
14.
14. H. V. Parks and J. E. Faller, Phys. Rev. Lett. 105, 110801 (2010).
http://dx.doi.org/10.1103/PhysRevLett.105.110801
15.
15. M. Faraday, Philos. Trans. R. Soc. London 15, 175 (1832).
16.
16. F. Durst, A. Melling, and J. H. Whitelaw, Principles and Practice of Laser-Doppler Anemometry, 2nd ed. (Academic, London, 1981).
17.
17. I. Bucenieks, “Modelling of rotary inductive electromagnetic flowmeter for liquid metals flow control,” in Proceedings of the 8th International Symposium on Magnetic Suspension Technology, edited by G. Fuchs, L. Schultz, O. de Haas, and H.-J. Schneider-Muntau, Dresden, Germany, 26–28 September (2005), pp. 204208.
18.
18. J. Priede, D. Buchenau, and G. Gerbeth, J. Appl. Phys. 110, 034512 (2010).
http://dx.doi.org/10.1063/1.3610440
19.
19. D. Jian, C. Karcher, X. Xu, A. Deng, E. Wang, and A. Thess, “Development of a noncontact electromagnetic surface velocity sensor for molten metal flow,” in 7th International Congress on Electromagnetic Processing of Materials, Beijing, China (submitted).
20.
20. P. A. Davidson, An Introduction to Magnetohydrodynamics (Cambridge University Press, 2001).
21.
21. We use salt water as a model substance because its electrical conductivity is similar to many industrially relevant electrolytes including glass melts whereas it is more convenient to handle than high temperature melts.
22.
22. BIPM, IEC, IFCC, IUPAC, IUPAP, OIML, Guide to the expression of uncertainty in measurement, ISO, Geneva, 1993.
23.
23. E. Jäger, E. Manske, H. Wurzbacher, R. Grünwald, H.-J. Büchner, W. Schott, and W. Pöschel, in Proceedings of the International EUSPEN Conference 3, 26–30 May 2002, Eindhoven.
24.
24. C. C. Feng, W. E. Deeds, and C. V. Dodd, J. Appl. Phys. 46, 29352940 (1975).
http://dx.doi.org/10.1063/1.322032
25.
25. F. Stefani, T. Gundrum, and G. Gerbeth, Phys. Rev. E 70, 056306 (2004).
http://dx.doi.org/10.1103/PhysRevE.70.056306
26.
26. A. Alferenok, M. Werner, M. Gramss, U. Lüedtke, and B. Halbedel, Int. J. Appl. Electrom. Mech. 38, 7992 (2012).
http://dx.doi.org/10.3233/JAE-2012-1410
27.
27. C. Diethold, internal report (unpublished).
28.
28. See supplementary material at http://dx.doi.org/10.1063/1.4714899 for more details about the magnetic field distribution between the two magnet poles. [Supplementary Material]
http://aip.metastore.ingenta.com/content/aip/journal/apl/100/19/10.1063/1.4714899
Loading
/content/aip/journal/apl/100/19/10.1063/1.4714899
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apl/100/19/10.1063/1.4714899
2012-05-10
2014-09-23

Abstract

Lorentz force velocimetry (LFV) is a noncontact electromagnetic flow measurement technique for liquid metals that is currently used in fundamental research and metallurgy. Up to now, the application of LFV was limited to the narrow class of liquids whose electrical conductivity is of the order 106 S/m. Here, we demonstrate that LFV can be applied to liquids with conductivities up to six orders of magnitude smaller than in liquid metals. We further argue that this range can be extended to 10−3 S/m under industrial and to 10−6 S/m under laboratory conditions making LFV applicable to most liquids of practical interest.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/100/19/1.4714899.html;jsessionid=qhq0yju3lsn.x-aip-live-03?itemId=/content/aip/journal/apl/100/19/10.1063/1.4714899&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: A universal noncontact flowmeter for liquids
http://aip.metastore.ingenta.com/content/aip/journal/apl/100/19/10.1063/1.4714899
10.1063/1.4714899
SEARCH_EXPAND_ITEM