1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Effect of different electrodes on Fano resonance in molecular devices
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/100/2/10.1063/1.3676190
1.
1. M. A. Reed, C. Zhou, C. J. Muller, T. P. Burgin, and J. M. Tour, Science 278, 252 (1997).
http://dx.doi.org/10.1126/science.278.5336.252
2.
2. C. Zhou, M. R. Deshpande, M. A. Reed, L. Jones, and J. M. Tour, Appl. Phys. Lett. 71, 611 (1997).
http://dx.doi.org/10.1063/1.120195
3.
3. J. Taylor, M. Brandbyge, and K. Stokbro, Phys. Rev. Lett. 89, 138301 (2002).
http://dx.doi.org/10.1103/PhysRevLett.89.138301
4.
4. A. Troisi and M. A. Ratner, Nano Lett. 4, 591 (2004).
http://dx.doi.org/10.1021/nl0352088
5.
5. G. M. Morales, P. Jiang, S. Yuan, Y. Lee, A. Sanchez, W. You, and L. Yu, J. Am. Chem. Soc. 127, 10456 (2005).
http://dx.doi.org/10.1021/ja051332c
6.
6. C. Toher, A. Filippetti, S. Sanvito, and K. Burke, Phys. Rev. Lett. 95, 146402 (2005).
http://dx.doi.org/10.1103/PhysRevLett.95.146402
7.
7. A. Grigoriev, J. Sköldberg, G. Wendin, and Ž. Crljen, Phys. Rev. B 74, 045401 (2006).
http://dx.doi.org/10.1103/PhysRevB.74.045401
8.
8. M. M. Deshmukh, A. L. Prieto, Q. Gu, and H. Park, Nano Lett. 3, 1383 (2003).
http://dx.doi.org/10.1021/nl034538p
9.
9. J. B. Pan, Z. H. Zhang, K. H. Ding, X. Q. Deng, and C. Guo, Appl. Phys. Lett. 98, 092102 (2011).
http://dx.doi.org/10.1063/1.3556278
10.
10. G. Breit and E. Wigner, Phys. Rev. 49, 519 (1936).
http://dx.doi.org/10.1103/PhysRev.49.519
11.
11. U. Fano, Phys. Rev. 124, 1866 (1961).
http://dx.doi.org/10.1103/PhysRev.124.1866
12.
12. J. Göres, D. Goldhaber-Gordon, S. Heemeyer, and M. A. Kastner, Phys. Rev. B 62, 2188 (2000).
http://dx.doi.org/10.1103/PhysRevB.62.2188
13.
13. T. A. Papadopoulos, I. M. Grace, and C. J. Lambert, Phys. Rev. B 74, 193306 (2006).
http://dx.doi.org/10.1103/PhysRevB.74.193306
14.
14. A. Sen and C.-C. Kaun, ACS Nano 4, 6404 (2010).
http://dx.doi.org/10.1021/nn101840a
15.
15. M. Brandbyge, J.-L. Mozos, P. Ordejón, J. Taylor, and K. Stokbro, Phys. Rev. B 65, 165401 (2002).
http://dx.doi.org/10.1103/PhysRevB.65.165401
16.
16. K. Stokbro, J. Taylor, M. Brandbyge, J. L. Mozos, and P. Ordejón, Comput. Mater. Sci. 27, 151 (2003).
http://dx.doi.org/10.1016/S0927-0256(02)00439-1
17.
17. P. Zhao, C. F. Fang, C. J. Xia, Y. M. Wang, D. S. Liu, and S. J. Xie, Appl. Phys. Lett. 93, 013113 (2008).
http://dx.doi.org/10.1063/1.2938415
18.
18. C. Fang, P. Zhao, B. Cui, L. Wang, D. Liu, and S. Xie, Phys. Lett. A 374, 4465 (2010).
http://dx.doi.org/10.1016/j.physleta.2010.09.004
19.
19.See supplementary material at http://dx.doi.org/10.1063/1.3676190 for results of transmission contrast between Au-DTB-Au, Au-DTB-Ag, and Ag-DTB-Ag and for results of transmission spectra for DTB and C4S2 with different anchor groups. [Supplementary Material]
20.
20. H. B. Michaelson, J. Appl. Phys. 48, 4729 (1977).
http://dx.doi.org/10.1063/1.323539
21.
21. Ž. Crljen and G. Baranović, Phys. Rev. Lett. 98, 116801 (2007).
http://dx.doi.org/10.1103/PhysRevLett.98.116801
22.
22. C. Jin, H. Lan, L. Peng, K. Suenaga, and S. Iijima, Phys. Rev. Lett. 102, 205501 (2009).
http://dx.doi.org/10.1103/PhysRevLett.102.205501
23.
23. C. Wang, A. S. Batsanov, M. R. Bryce, S. Martín, R. J. Nichols, S. J. Higgins, V. M. García-Suárez, and C. J. Lambert, J. Am. Chem. Soc. 131, 15647 (2009).
http://dx.doi.org/10.1021/ja9061129
24.
journal-id:
http://aip.metastore.ingenta.com/content/aip/journal/apl/100/2/10.1063/1.3676190
Loading
View: Figures

Figures

Image of FIG. 1.

Click to view

FIG. 1.

(Color online) Model structure of a two-probe system with a single molecule DTB coupled to symmetric Au electrodes (top) and asymmetric Au and Ag electrodes (bottom) by sulfur ends. L, C, and R indicate the left electrode, extended molecule, and right electrode.

Image of FIG. 2.

Click to view

FIG. 2.

(Color online) The transmission spectra for SE-DTB and ASE-DTB. The short vertical bars indicate the projected molecular energy levels.

Image of FIG. 3.

Click to view

FIG. 3.

(Color online) The MPSH of HOMO and LUMO for SE-DTB (top) and ASE-DTB (bottom).

Image of FIG. 4.

Click to view

FIG. 4.

(Color online) The LDOS plots at 0.847 eV for SE-DTB (top) and ASE-DTB (bottom).

Image of FIG. 5.

Click to view

FIG. 5.

(Color online) The transmission spectra for SE-C 4 S 2 and ASE-C 4 S 2. The insets show the LDOS plots at 0.967 eV for SE-C 4 S 2 and ASE-C 4 S 2, respectively.

Loading

Article metrics loading...

/content/aip/journal/apl/100/2/10.1063/1.3676190
2012-01-10
2014-04-19

Abstract

By using nonequilibrium Green’s function in combination with density functional theory, we study the electronic transportproperties of two typical π-conjugated molecules (dithiol-benzene and C 4 S 2), sandwiched between two metallic electrodes made of different metals. The presence of two different electrodes leads to Fano resonances at certain energy. As a consequence, electronic transport in future molecular electric circuits can be substantially affected when the molecular devices placed between electrodes with different chemical potentials. The Fano line shapes reveal that there is nonresonant channel when two asymmetric electrodes are employed.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/100/2/1.3676190.html;jsessionid=7thbellrb5gm4.x-aip-live-01?itemId=/content/aip/journal/apl/100/2/10.1063/1.3676190&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Effect of different electrodes on Fano resonance in molecular devices
http://aip.metastore.ingenta.com/content/aip/journal/apl/100/2/10.1063/1.3676190
10.1063/1.3676190
SEARCH_EXPAND_ITEM