1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
Thermo-optic switch based on transmission-dip shifting in a double-slot photonic crystal waveguide
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/100/20/10.1063/1.4718353
1.
1. B. G. Lee, A. Biberman, J. Chan, and K. Bergman, IEEE J. Sel. Top. Quantum Electron. 16, 6 (2010).
http://dx.doi.org/10.1109/JSTQE.2009.2028437
2.
2. D. Miller, IEEE Proc. 97, 1166 (2009).
http://dx.doi.org/10.1109/JPROC.2009.2014298
3.
3. D. M. Beggs, T. P. White, L. Cairns, L. O’Faolain, and T. F. Krauss, IEEE Photonics Technol. Lett. 21, 24 (2009).
http://dx.doi.org/10.1109/LPT.2008.2008104
4.
4. H. Wen, O. Kuzucu, T. G. Hou, M. Lipson, and A. L. Gaeta, Opt. Lett. 36, 1413 (2011).
http://dx.doi.org/10.1364/OL.36.001413
5.
5. L. O’Faolain, D. M. Beggs, T. P. White, T. Kampfrath, K. Kuipers, and T. F. Krauss, IEEE Photonics J. 2, 404 (2010).
http://dx.doi.org/10.1109/JPHOT.2010.2047918
6.
6. L. L. Gu, W. Jiang, X. N. Chen, and R. T. Chen, IEEE Photonics Technol. Lett. 19, 342 (2007).
http://dx.doi.org/10.1109/LPT.2007.891245
7.
7. G. Coppola, L. Sirleto, I. Rendina, and M. Iodice, Opt. Eng. 50, 0711127 (2011).
http://dx.doi.org/10.1117/1.3574378
8.
8. A. Melloni, A. Canciamilla, C. Ferrari, F. Morichetti, L. O’Faolain, T. F. Krauss, R. De La Rue, A. Samarelli, and M. Sorel, IEEE Photonics J. 2, 181 (2010).
http://dx.doi.org/10.1109/JPHOT.2010.2044989
9.
9. X. Z. Zheng, I. Shubin, G. L. Li, T. Pinguet, A. Mekis, J. Yao, H. Thacker, Y. Luo, J. Costa, K. Raj, J. E. Cunningham, and A. V. Krishnamoorthy, Opt. Express 18, 5151 (2010).
http://dx.doi.org/10.1364/OE.18.005151
10.
10. Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, Nature (London) 438, 65 (2005).
http://dx.doi.org/10.1038/nature04210
11.
11. H. C. Nguyen, Y. Sakai, M. Shinkawa, N. Ishikura, and T. Baba, Opt. Express 19, 13000 (2011).
http://dx.doi.org/10.1364/OE.19.013000
12.
12. X. Wang, C. Lin, S. Chakravarty, J. Luo, A. K. Y. Jen, and R. T. Chen, Opt. Lett. 36, 882 (2011).
http://dx.doi.org/10.1364/OL.36.000882
13.
13. K. Y. Cui, Y. D. Huang, W. Zhang, and J. D. Peng, J. Lightwave Technol. 26,1492 (2008).
http://dx.doi.org/10.1109/JLT.2008.923634
14.
14. M. T. Tinker and J. B. Lee, Opt. Express 13, 7174 (2005).
http://dx.doi.org/10.1364/OPEX.13.007174
15.
15. Y. H. Cui, K. Liu, D. L. MacFarlane, and J. B. Lee, Opt. Lett. 35, 3613 (2010).
http://dx.doi.org/10.1364/OL.35.003613
16.
16. A. Hosseini, X. C. Xu, D. N. Kwong, H. Subbaraman, W. Jiang, and R. T. Chen, Appl. Phys. Lett. 98, 031107 (2011).
http://dx.doi.org/10.1063/1.3548557
17.
17. K. Y. Cui, Y. D. Huang, G. Y. Zhang, Y. Z. Li, X. Tang, X. Y. Mao, Q. Zhao, W. Zhang, and J. D. Peng, Appl. Phys. Lett. 95, 191901 (2009).
http://dx.doi.org/10.1063/1.3258072
18.
18. S. Olivier, H. Benisty, C. Weisbuch, C. Smith, T. Krauss, and R. Houdre, Opt. Express 11, 1490 (2003).
http://dx.doi.org/10.1364/OE.11.001490
19.
19. B. S. Song, S. W. Jeon, and S. Noda, Opt. Lett. 36, 91 (2011).
http://dx.doi.org/10.1364/OL.36.000091
http://aip.metastore.ingenta.com/content/aip/journal/apl/100/20/10.1063/1.4718353
Loading
View: Figures

Figures

Image of FIG. 1.

Click to view

FIG. 1.

(a) Microscope picture of the fabricated DS-PCWG with its titanium (Ti)/aluminum (Al) microheater, where an enlarged figure of the Ti microheater in reference to the DS-PCWG is shown in the right inset, and the corresponding area in the left figure is marked out; (b) SEM image of the DS-PCWG without the driving electrode. The lattice constant, a, and the hole radius, r, are 400 and 130 nm, respectively. The slot width, W slot, is 80 nm, and the distance between the centers of the two slots, W, is 560 nm.

Image of FIG. 2.

Click to view

FIG. 2.

(a) Band structure and magnetic field intensity patterns at k = 0.3 for mode #0 and k = 0.5 for the other higher order modes. (b) Transmission spectra under different refractive index variations of the transverse electric mode of the DS-PCWG with structure parameters consisting with the fabricated sample.

Image of FIG. 3.

Click to view

FIG. 3.

(a) Temperature variations under different applied heating powers. The inset is the 3D temperature distribution. (b) Temperature distributions located just below the microheater in the vertical direction under an applied heating power of 2.4 mW for the switch. The insets are the top view and the cross-section view for the 3D temperature distribution.

Image of FIG. 4.

Click to view

FIG. 4.

(a) Measured transmission spectra under different applied heating powers. (b) Extinction ratio of the on- and off-state for the switch.

Loading

Article metrics loading...

/content/aip/journal/apl/100/20/10.1063/1.4718353
2012-05-14
2014-04-17

Abstract

Optical switch based on an ultra-compact double-slot photonic crystal waveguide (DS-PCWG) with a titanium/aluminum microheater is demonstrated. The operating principle relies on shifting a transmission-dip caused by the defect mode coupling in photonic band gap(PBG). Based on the unique mode coupling in PBG, low switching power of 9.2 mW and high extinction ratio of 17 dB are achieved experimentally while the length of DS-PCWG is only 16 μm.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/100/20/1.4718353.html;jsessionid=35clb19lb2ur9.x-aip-live-06?itemId=/content/aip/journal/apl/100/20/10.1063/1.4718353&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Thermo-optic switch based on transmission-dip shifting in a double-slot photonic crystal waveguide
http://aip.metastore.ingenta.com/content/aip/journal/apl/100/20/10.1063/1.4718353
10.1063/1.4718353
SEARCH_EXPAND_ITEM