1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
GaMnAs: Position of Mn-d levels and majority spin band gap predicted from GGA-1/2 calculations
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/100/20/10.1063/1.4718602
1.
1. R. R. Pelá and L. K. Teles, J. Magn. Magn. Mater. 321, 984 (2009).
http://dx.doi.org/10.1016/j.jmmm.2008.03.010
2.
2. R. R. Pelá and L. K. Teles, J. Supercond. Novel Magn. 23, 61 (2010).
http://dx.doi.org/10.1007/s10948-009-0537-y
3.
3. C. Caetano, L. K. Teles, M. Marques, and L. G. Ferreira, J. Appl. Phys. 107, 123904 (2010).
http://dx.doi.org/10.1063/1.3448025
4.
4. A. H. Macdonald, P. Schiffer, and N. Samarth, Nat. Mater. 4, 195 (2005).
http://dx.doi.org/10.1038/nmat1325
5.
5. T. Dietl, Nat. Mater. 9, 965 (2010).
http://dx.doi.org/10.1038/nmat2898
6.
6. S. Pearton, Nat. Mater. 3, 203 (2004).
http://dx.doi.org/10.1038/nmat1102
7.
7. A. Stroppa and G. Kresse, Phys. Rev. B 79, 201201 (2009).
http://dx.doi.org/10.1103/PhysRevB.79.201201
8.
8. T. Jungwirth, J. Sinova, J. Masek, J. Kucera, and A. H. MacDonald, Rev. Mod. Phys. 78, 809 (2006).
http://dx.doi.org/10.1103/RevModPhys.78.809
9.
9. M. S. Hybertsen and S. G. Louie, Phys. Rev. Lett. 55, 1418 (1985).
http://dx.doi.org/10.1103/PhysRevLett.55.1418
10.
10. J. P. Perdew and A. Zunger, Phys. Rev. B 23, 5048 (1981).
http://dx.doi.org/10.1103/PhysRevB.23.5048
11.
11. A. D. Becke, J. Chem. Phys. 98, 1372 (1993).
http://dx.doi.org/10.1063/1.464304
12.
12. R. Asahi, W. Mannstadt, and A. J. Freeman, Phys. Rev. B 59, 7486 (1999).
http://dx.doi.org/10.1103/PhysRevB.59.7486
13.
13. M. Städele, J. A. Majewski, P. Vogl, and A. Görling, Phys. Rev. Lett. 79, 2089 (1997).
http://dx.doi.org/10.1103/PhysRevLett.79.2089
14.
14. V. I. Anisimov, F. Aryasetiawan, and A. I. Lichtenstein, J. Phys.: Condens. Matter 9, 767 (1997).
http://dx.doi.org/10.1088/0953-8984/9/4/002
15.
15. F. Kwen, R. Leitsmann, and F. Bechstedt, Phys. Rev. B 80, 045203 (2009).
http://dx.doi.org/10.1103/PhysRevB.80.045203
16.
16. A. B. Shick, J. Kudrnovský, and V. Drchal, Phys. Rev. B 69, 125207 (2004).
http://dx.doi.org/10.1103/PhysRevB.69.125207
17.
17. L. G. Ferreira, M. Marques, and L. K. Teles, Phys. Rev. B 78, 125116 (2008).
http://dx.doi.org/10.1103/PhysRevB.78.125116
18.
18. L. G. Ferreira, M. Marques, and L. K. Teles, AIP Adv. 1, 032119 (2011).
http://dx.doi.org/10.1063/1.3624562
19.
19. R. R. Pelá, C. Caetano, M. Marques, L. G. Ferreira, J. Furthmüller, and L. K. Teles, Appl. Phys. Lett. 98, 151907 (2011).
http://dx.doi.org/10.1063/1.3576570
20.
20. M. Ribeiro, Jr., L. R. C. Fonseca, and L. G. Ferreira, Phys. Rev. B 79, 241312 (2009).
http://dx.doi.org/10.1103/PhysRevB.79.241312
21.
21. G. Kresse and J. Hafner, Phys. Rev. B 47, R558 (1993).
http://dx.doi.org/10.1103/PhysRevB.47.558
22.
22. G. Kresse and J. Furthmüller, Comput. Mater. Sci. 6, 15 (1996).
http://dx.doi.org/10.1016/0927-0256(96)00008-0
23.
23. I. Vurgaftman, J. R. Meyer, and L. R. Ram-Mohan, J. Appl. Phys. 89, 5815 (2001).
http://dx.doi.org/10.1063/1.1368156
24.
24. H. Ohno, A. Shen, F. Matsukura, A. Oiwa, A. Endo, S. Katsumoto, and Y. Iye, Appl. Phys. Lett. 69, 363 (1996).
http://dx.doi.org/10.1063/1.118061
25.
25. K. Sato, L. Bergqvist, J. Kudrnovský, P. H. Dederichs, O. Eriksson, I. Turek, B. S. Bouzerar, G. Bouzerar, H. Katayama-Yoshida, V. A. Dinh, T. Fukushima, H. Kizaki, and R. Zeller, Rev. Mod. Phys. 82, 1633 (2010).
http://dx.doi.org/10.1103/RevModPhys.82.1633
26.
26. T. C. Schulthess, W. M. Temmerman, Z. Szotek, A. Svane, and L. Petit, J. Phys.: Condens. Matter 19, 165207 (2007).
http://dx.doi.org/10.1088/0953-8984/19/16/165207
27.
27. L. Bergqvist, P. A. Korzhavyi, B. Sanyal, S. Mirbt, I. A. Abrikosov, L. Nordström, E. A. Smirnova, P. Mohn, P. Svedlindh, and O. Eriksson, Phys. Rev. B 67, 205201 (2003).
http://dx.doi.org/10.1103/PhysRevB.67.205201
28.
28. S. Sanvito, P. Ordejón, and N. A. Hill, Phys. Rev. B 63, 165206 (2001).
http://dx.doi.org/10.1103/PhysRevB.63.165206
29.
29. J. Okabayashi, A. Kimura, T. Misokawa, A. Fujimori, T. Hayashi, and M. Tanaka, Phys. Rev. B 59, R2486 (1999).
http://dx.doi.org/10.1103/PhysRevB.59.R2486
30.
30. J. Okabayashi, A. Kimura, O. Rader, T. Misokawa, A. Fujimori, T. Hayashi, and M. Tanaka, Phys. Rev. B 64, 125304 (2001).
http://dx.doi.org/10.1103/PhysRevB.64.125304
31.
31. H. Åsklund, L. Ilver, J. Kanski, J. Sadowski, and R. Mathieu, Phys. Rev. B 66, 115319 (2002).
http://dx.doi.org/10.1103/PhysRevB.66.115319
32.
32. M. Adell, L. Ilver, J. Kanski, J. Sadowski, R. Mathieu, and V. Stanciu, Phys. Rev. B 70, 125204 (2004).
http://dx.doi.org/10.1103/PhysRevB.70.125204
33.
33. M. Turek, J. Siewert, and J. Fabian, Phys. Rev. B 78, 085211 (2008).
http://dx.doi.org/10.1103/PhysRevB.78.085211
34.
34. T. Dietl, H. Ohno, and F. Matsukura, Phys. Rev. B 63, 195205 (2001).
http://dx.doi.org/10.1103/PhysRevB.63.195205
35.
35. T. Tsuruoka, N. Tachikawa, S. Ushioda, F. Matsukura, K. Takamura, and H. Ohno, Appl. Phys. Lett. 81, 2800 (2002).
http://dx.doi.org/10.1063/1.1512953
36.
36. O. Thomas, O. Makarovsky, A. Patan, L. Eaves, R. P. Campion, K. W. Edmonds, C. T. Foxon, and B. L. Gallagher, Appl. Phys. Lett. 90, 082106 (2007).
http://dx.doi.org/10.1063/1.2709624
37.
37. O. Yastrubchak, J. Żuk, H. Krżyanowska, J. Z. Domagala, T. Andrearczyk, J. Sadowski, and T. Wosinski, Phys. Rev. B 83, 245201 (2011).
http://dx.doi.org/10.1103/PhysRevB.83.245201
38.
38. C. Caetano, L. K. Teles, M. Marques, A. Dal Pino, Jr, and L. G. Ferreira, Phys. Rev. B 74, 045215 (2006).
http://dx.doi.org/10.1103/PhysRevB.74.045215
39.
39. A. Belabbes, A. Zaoui, and M. Ferhat, Appl. Phys. Lett. 97, 242509 (2010).
http://dx.doi.org/10.1063/1.3527978
40.
40. A. Z. AlZahrani, G. P. Srivastava, R. Garg, and M. A. Migliorato, J. Phys.: Condens. Matter 21, 485504 (2009).
http://dx.doi.org/10.1088/0953-8984/21/48/485504
http://aip.metastore.ingenta.com/content/aip/journal/apl/100/20/10.1063/1.4718602
Loading
/content/aip/journal/apl/100/20/10.1063/1.4718602
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apl/100/20/10.1063/1.4718602
2012-05-17
2014-07-29

Abstract

Among all magnetic semiconductors, GaMnAs seems to be the most important one. In this work, we present accurate first-principles calculations of GaMnAs within the GGA-1/2 approach: We concentrate our efforts in obtaining the position of the peak of Mn-d levels in the valence band and also the majority spin band gap. For the position of the Mn-d peak, we find a value of 3.3 eV below the Fermi level, in good agreement with the most recent experimental results of 3.5 and 3.7 eV. An analytical expression that fits the calculated Eg (x) for majority spin is derived in order to provide ready access to the band gap for the composition range from 0 to 0.25. We found a value of 3.9 eV for the gap bowing parameter. The results agree well with the most recent experimental data.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/100/20/1.4718602.html;jsessionid=2hvcv319xfxjd.x-aip-live-06?itemId=/content/aip/journal/apl/100/20/10.1063/1.4718602&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: GaMnAs: Position of Mn-d levels and majority spin band gap predicted from GGA-1/2 calculations
http://aip.metastore.ingenta.com/content/aip/journal/apl/100/20/10.1063/1.4718602
10.1063/1.4718602
SEARCH_EXPAND_ITEM