1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
Random telegraph signal and 1/f noise in forward-biased single-walled carbon nanotube film-silicon Schottky junctions
Rent:
Rent this article for
USD
10.1063/1.4719094
/content/aip/journal/apl/100/21/10.1063/1.4719094
http://aip.metastore.ingenta.com/content/aip/journal/apl/100/21/10.1063/1.4719094

Figures

Image of FIG. 1.
FIG. 1.

(a) The 3D schematic of the fabricated CNT film-Si MS device showing both the top and cross-sectional views. (b) I-V characteristics of the CNT film/p-type Si MS device in the voltage bias range from −3 V to 3 V at room temperature. Note that the polarity of the voltage bias is defined such that positive values correspond to forward bias.

Image of FIG. 2.
FIG. 2.

(a) Low frequency current noise spectral density of the CNT film-Si MS junction measured at three different forward biases (1.04, 1.97, and 2.41 V as labeled), showing a strong Lorentzian noise component on top of a 1/f noise component. The inset shows the time-domain current fluctuations at 1.04 V in a time frame of 500 ms, characteristic of a two-level asymmetric RTS noise. (b) The total measured current noise spectral density at 1.97 V from part (a) (red line), the Lorentzian component obtained from fitting the data (short dashed line), and the 1/f noise component obtained by subtracting the Lorentzian component from the total measured SI (blue line). The dashed line is a power law fit to the extracted 1/f noise component yielding an exponent of γ = 1.1. The inset shows averaged over three measurements as a function of forward bias current I at a frequency of 10 Hz.

Image of FIG. 3.
FIG. 3.

(a) Low frequency current noise spectral density of the CNT film-Si MS device at 1.97 V forward bias measured on three different days (labeled as measurements 1, 2, and 3). Note that Measurement 1 is the same as the 1.97 V curve in Fig. 2(a). The change in both the location of f c and the value of S 0 is evident, indicating temporally unstable RTS noise. The inset shows the RTS amplitude ΔI as a function of the forward current I. (b) Statistical distribution of the time durations of the up and down states for Measurement 1 recorded simultaneously as the noise spectra shown in part (a). The exponential fitting to Poisson distributions as shown in the figure gives an average lifetime of τ up  = 5.81 ms and τ down  = 8.55 ms. (c) A semi-log plot of τ up down as a function of forward bias voltage for Measurement 1. The extrapolation of the exponential best fit as shown by the dashedline gives the zero-bias trap level with respect to the Fermi level as EF -ET  = 32.7 meV.

Tables

Generic image for table
Table I.

The values of τ up , τ down , fc , and S 0 obtained from the time domain analysis and the values of fc and S 0 obtained from the frequency domain analysis for Measurements 1, 2, and 3 shown in Fig. 3(a). The time domain fc and S 0 values are calculated from τ up , τ down , and ΔI values obtained from the measured RTS current fluctuations using Eq. (2). The frequency domain values are extracted by a Lorentzian fitting of the data in Fig. 3(a), similar to that shown in Fig.2(b).

Loading

Article metrics loading...

/content/aip/journal/apl/100/21/10.1063/1.4719094
2012-05-21
2014-04-24
Loading

Full text loading...

This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Random telegraph signal and 1/f noise in forward-biased single-walled carbon nanotube film-silicon Schottky junctions
http://aip.metastore.ingenta.com/content/aip/journal/apl/100/21/10.1063/1.4719094
10.1063/1.4719094
SEARCH_EXPAND_ITEM