1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Photophysics and morphology of poly (3-dodecylthienylenevinylene)-[6,6]–phenyl-C61-butyric acid methyl ester composite
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/100/21/10.1063/1.4720091
1.
1. M. Reyes-Reyes, K. Kim, and D. L. Carroll, Appl. Phys. Lett. 87, 083506 (2005).
http://dx.doi.org/10.1063/1.2006986
2.
2. W. Ma, C. Yang, X. Gong, K. Lee, and A. J. Heeger, Adv. Funct. Mater. 15, 1617 (2005).
http://dx.doi.org/10.1002/adfm.200500211
3.
3. S. E. Shaheen, C. J. Brabec, N. S. Sariciftci, F. Padinger, T. Fromherz, and J. C. Hummelen, Appl. Phys. Lett. 78, 841 (2001).
http://dx.doi.org/10.1063/1.1345834
4.
4. F. Padinger, R. S. Rittberger, and N. S. Sariciftci, Adv. Funct. Mater. 13, 85 (2003).
http://dx.doi.org/10.1002/adfm.200390011
5.
5. F. Banishoeib, P. Adriaensens, S. Berson, S. Guillerez, O. Douheret, J. Manca, S. Fourier, T. J. Cleij, L. Lutsen, and D. Vanderzande, Sol. Eng. Mater. Sol. Cells 91, 1026 (2007).
http://dx.doi.org/10.1016/j.solmat.2007.02.013
6.
6. S. Gillissen, A. Henckens, L. Lutsen, D. Vanderzande, and J. Gelan, Synth. Met. 135, 255 (2003).
http://dx.doi.org/10.1016/S0379-6779(02)00669-0
7.
7. C. Zhang, T. Matos, R. Li, E. Annih, S -S Sun, J. E. Lewis, J. Zhang, and X. Jiang, Polym. Chem. 1, 663 (2010).
http://dx.doi.org/10.1039/b9py00324j
8.
8. C. Zhang, J. Sun, R. Li, S -S. Sun, E. Lafalce, and X. Jiang, Macromolecules 44, 6389 (2011).
http://dx.doi.org/10.1021/ma200434v
9.
9. C. Girot to, D. Cheyns, T. Aernouts, F. Banishoeib, L. Lutsen, T. J. Cleij, J. Thomas, D. Vanderzande, J. Genoe, J. Poortman, and P. Heremans, Org. Electronics 9, 740 (2008).
http://dx.doi.org/10.1016/j.orgel.2008.05.014
10.
10. J. Y. Kim Y. Qin, D. M. Stevens, O. Ugurlu, V. Kalihari, M. A. Hillmyer, and C. D. Frisbie, J. Phys. Chem. C 113, 10790 (2009).
http://dx.doi.org/10.1021/jp902199q
11.
11. F. Li and Y.P. Zou, Adv. Mater. 20, 2952 (2008).
http://dx.doi.org/10.1002/adma.200800606
12.
12. X. M. Jiang, R. Österbacka, O. J. Korovyanko, C. P. An, B. Horovitz, R. A. J. Janssen, and Z. V. Vardeny, Adv. Funct. Mater. 12, 587 (2002).
http://dx.doi.org/10.1002/1616-3028(20020916)12:9<587::AID-ADFM587>3.0.CO;2-T
13.
13. V. Shrotriya, J. Ouyang, R. J. Tseng, G. Li, and Y. Yang, Chem. Phys. Lett. 411, 138 (2005).
http://dx.doi.org/10.1016/j.cplett.2005.06.027
14.
14. Y. Kim, S. Cook, S. M. Tuladhar, A. S. A. Choulis, J. Nelson, J. R. Durrant, D. D. C. Bradley, M. Giles, I. McCulloch, C.-S. Ha, and M. Ree, Nature Mater. 5, 197 (2006).
http://dx.doi.org/10.1038/nmat1574
15.
15. R. J. Kline and M. D. McGehee, J. Macromol. Sci., Part C: Polym. Rev. 46, 27 (2006).
http://dx.doi.org/10.1080/15321790500471194
16.
16. E. Lafalce, X. Jiang, and C. Zhang, J. Phys. Chem. B 115, 13139 (2011).
http://dx.doi.org/10.1021/jp2066666
17.
17. E. Olejnik, B. Pandit, T. Basel, E. Lafalce, C.-X. Sheng, C. Zhang, X. Jiang, and Z. V. Vardeny, “Ultrafast optical studies of ordered poly(3-thienylene-vinylene) films,” Phys. Rev. B. (in press), manuscript # BNJ1167.
18.
18. S. Cook, H. Ohkita, Y. Kim, J. J. Benson-Smith, D. D.C. Bradley, and J. R. Durrant, Chem. Phys. Lett. 445, 276 (2007).
http://dx.doi.org/10.1016/j.cplett.2007.08.005
19.
19. N. S. Sariciftci, B. Kraabel, C. H. Lee, K. Pakbaz, and A. J. Heeger, Phys. Rev. B 50, 12044 (1994).
http://dx.doi.org/10.1103/PhysRevB.50.12044
20.
20. J. Clark, C. Silva, R. H. Friend, and F. C. Spano, Phys. Rev. Lett. 98, 206406 (2007).
http://dx.doi.org/10.1103/PhysRevLett.98.206406
21.
21. C. Botta, S. Luzzati, R. Tubino, and A. Borghesi, Phys. Rev. B 46, 13008 (1992).
http://dx.doi.org/10.1103/PhysRevB.46.13008
22.
22. X. Yang, J. K. J. van Duren, M. T. Rispens, J. C. Hummelen, R. A. J. Janssen, M. A. J. Michels, and J. Loos, Adv. Mater. 16, 802 (2004).
http://dx.doi.org/10.1002/adma.200306372
23.
23. M. Fujitsuka, H. Kasai, A. Masuhara, S. Okada, H. Oikawa, H. Nakanishi, O. Ito, and K. Yase, J. Photochem. Photobiol. A, Chem. 133, 45 (2000).
http://dx.doi.org/10.1016/S1010-6030(00)00219-7
24.
24. S. Cook, H. Ohkita, and J. R. Durrant, Appl. Phys. Lett. 89, 101128 (2006).
http://dx.doi.org/10.1063/1.2338528
25.
25. P. A. Lane, X. Wei, and Z. V. Vardeny, Phys. Rev. B 56, 4626 (1997).
http://dx.doi.org/10.1103/PhysRevB.56.4626
26.
26. T. Kobayashi, K. Kinoshita, T. Nagase, and H. Naito, Phys. Rev. B 83, 035305 (2011).
http://dx.doi.org/10.1103/PhysRevB.83.035305
27.
27. K. Lee, R. A. J. Janssen, N. S. Sariciftci, and A. J. Heeger, Phys. Rev. B 49, 5781 (1994).
http://dx.doi.org/10.1103/PhysRevB.49.5781
28.
28. M. Wohlgenannt, W. Graupner, G. Leising, and Z. V. Vardeny, Phys. Rev. B 60, 5321 (1999).
http://dx.doi.org/10.1103/PhysRevB.60.5321
29.
29. T. Drori, J. Holt, and Z. V. Vardeny, Phys. Rev. B 82, 075207 (2010).
http://dx.doi.org/10.1103/PhysRevB.82.075207
30.
30. I. Hwang, D. Moses, and A. J. Heeger, J. Phys. Chem. C 112, 4350 (2008).
http://dx.doi.org/10.1021/jp075565x
31.
31. I. Hwang, Q.-H. Xu, C. Soci, B. Chen, A. K. -Y. Jen, D. Moses, and A. J. Heeger, Adv. Func. Mater. 17, 563 (2007).
http://dx.doi.org/10.1002/adfm.200600267
32.
32.See supplemental material at http://dx.doi.org/10.1063/1.4720091 for the fitting of photoluminescence spectra. [Supplementary Material]
33.
journal-id:
http://aip.metastore.ingenta.com/content/aip/journal/apl/100/21/10.1063/1.4720091
Loading

Figures

Image of FIG. 1.

Click to view

FIG. 1.

(a) The PL spectra of films of PTV010 (black circle) and PTV010:PCBM blend with 1:1 weight ratio (red circle). The line through data points is fit using a modified Franck-Condon model using the equation I(ω) ∼ (nf ℏω)3 [αΓ(ℏω − E0) + ∑(S m/m!) Γ(ℏω − (E0 − mEp)], where S is the Huang-Rhys parameter which defines the electron-phonon coupling strength; m is the number of the vibrational modes involved in the transition; E0 is the PL onset at ∼E(11Bu); Ep is the strongest coupled vibrational energy, which is taken to be 0.18 eV for C = C stretching vibration; (b) Same as in (a) but for PTV55 film and PTV55:PCBM blend film. As a comparison, the PL spectrum of PTV55:PCBM blend film excited by UV light (blue empty circle) was also shown. The arrow in (a) and (b) indicates the PL from PCBM. All the data were not corrected by the response of grating-si detector, however, all PL were normalized to the 0-1 band intensity for comparison.

Image of FIG. 2.

Click to view

FIG. 2.

(a) Molecular structures of [6,6]–phenyl-C61-butyric acid methyl ester (PCBM) and poly(3-dodecylthienylenevinylene) (PTV). Shown are PTV with two regioregularities: PTV55 (regiorandom) and PTV010 (regioregular); (b) Energy levels of PTV:PCBM blend. The broken line shows the highest occupied molecular orbital (HOMO) of PTV55. ET stands for energy transfer from PCBM to PTV.

Image of FIG. 3.

Click to view

FIG. 3.

The AFM images (left panel: topology; right panel: phase) of (a) PTV55; (b)PTV55:PCBM blend; (c) PTV010; and (d) PTV010:PCBM blend films on sapphire substrates. The scanning range is 10 µm × 10 µm. Height bar (peak to valley) represents 500 nm, and phase bar (contrast) represents 90°. The inset of (b) right panel is the phase image of a smaller scale (0 to 5°).

Image of FIG. 4.

Click to view

FIG. 4.

(a) PIA spectra of PTV010:PCBM blend films measured at two modulation frequencies, 340 Hz (filled circle) and 3 kHz (solid line). Both in-phase (black) and quadrature (red) components were shown; Green line is the PIA spectrum of PTV55:PCBM blend at 3 kHz; The frequency dependence of the (b) PTV010:PCBM blend film, and (c) PTV55:PCBM blend film, for polaron (black, triangles) and polymer triplet (red, circles), and PCBM triplet (green, squares) measured both in-phase (filled) and in quadrature (empty). The laser intensity is 40 mW/cm2. In both cases, the sample is at 10 K while under illumination with the 488 nm (2.54 eV) line from an Ar+ laser.

Tables

Generic image for table

Click to view

Table I.

Lifetime of various photoexcitations in PIA spetra of neat PTV and PTV/PCBM blend films. P2 and T are polaron and triplet for neat polymer, respectively; and PCBM-T is the triplet for PCBM molecules.

Loading

Article metrics loading...

/content/aip/journal/apl/100/21/10.1063/1.4720091
2012-05-25
2014-04-20

Abstract

A series of low band gap poly(3-dodecylthienylenevinylene) (PTV) with controlled morphological order have been synthesized and blended with the electron acceptor [6,6]–phenyl-C61-butyric acid methyl ester (PCBM) for organic photovoltaic devices. Two polymers with the most and least side chain regioregularity were chosen in this work, namely the PTV010 and PTV55, respectively. Using photoluminescence, photo-induced absorption spectroscopy, and atomic force microscopy, we find no direct evidence of photoinduced charge transfer between the two constituents, independent of the bulk-heterojunction morphology of the film, although the possibility of formation of P+/C60 charge transfer complex was not completely ruled out. The large exciton binding energy (Eb = 0.6 eV) in PTV inhibits the photoinduced electron transfer from PTV to PCBM. In addition, excitons formed on polymer chains suffer ultrafast (<ps) intrachain decay to the dark 2Ag state in both PTV010 and PTV55 cases, whereas excitons generated on PCBM molecules undergo energy transfer only to PTV55 in the blend film. Thus, the addition of PCBM increases the photoluminescence yield with respect to neat polymer yield. The efficiency of the energy transfer process is shown to depend on the degree of polymer and PCBM intermixing within the film, which in turn is governed by the polymer chain orders. The effect of such intermixing on the resulting kinetics of photo-induced excitations is also discussed. Our results show limited effect of polymer crystallinity of PTV to its excitonic properties, much the contrary of the case with poly (3-hexylthiophene) which has similar chemical structure with PTV.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/100/21/1.4720091.html;jsessionid=guoa3g4nev6s.x-aip-live-02?itemId=/content/aip/journal/apl/100/21/10.1063/1.4720091&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Photophysics and morphology of poly (3-dodecylthienylenevinylene)-[6,6]–phenyl-C61-butyric acid methyl ester composite
http://aip.metastore.ingenta.com/content/aip/journal/apl/100/21/10.1063/1.4720091
10.1063/1.4720091
SEARCH_EXPAND_ITEM