1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
Mirrors for slow neutrons from holographic nanoparticle-polymer free-standing film-gratings
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/100/21/10.1063/1.4720511
1.
1. A. Furrer, J. Mesot, and T. Strässle, Neutron Scattering in Condensed Matter Physics (World Scientific, Singapore, 2009).
2.
2. B. T. M. Willis and C. J. Carlile, Experimental Neutron Scattering (Oxford University Press, New York, 2009).
3.
3. H. Rauch and S. A. Werner, Neutron Interferometry (Clarendon, Oxford, UK, 2000).
4.
4. Y. Hasegawa and H. Rauch, New. J. Phys. 13, 115010 (2011).
http://dx.doi.org/10.1088/1367-2630/13/11/115010
5.
5. D. Dubbers and M. G. Schmidt, Rev. Mod. Phys. 83, 1111 (2011).
http://dx.doi.org/10.1103/RevModPhys.83.1111
6.
6. F. Vita, D. E. Lucchetta, R. Castagna, L. Criante, and F. Simoni, Appl. Phys. Lett. 91, 103114 (2007).
http://dx.doi.org/10.1063/1.2771077
7.
7. V. F. Sears, Neutron Optics (Oxford University Press, New York, 1989).
8.
8. M. Fally, Appl. Phys. B 75, 405 (2002).
http://dx.doi.org/10.1007/s00340-002-1035-0
9.
9. J. Klepp, C. Pruner, M. A. Ellabban, Y. Tomita, H. Lemmel, H. Rauch, and M. Fally, Nucl. Instrum. Methods Phys. Res. A 634, S59 (2011).
http://dx.doi.org/10.1016/j.nima.2010.06.360
10.
10. H. Kogelnik, Bell Syst. Tech. J. 48, 2909 (1969).
11.
11. C. Pruner, M. Fally, R. A. Rupp, R. P. May, and J. Vollbrandt, Nucl. Instrum. Methods Phys. Res. A 560, 598 (2006).
http://dx.doi.org/10.1016/j.nima.2005.12.240
12.
12. N. Suzuki, Y. Tomita, and T. Kojima, Appl. Phys. Lett. 81, 4121 (2002).
http://dx.doi.org/10.1063/1.1525391
13.
13. N. Suzuki and Y. Tomita, Appl. Opt. 43, 2125 (2004).
http://dx.doi.org/10.1364/AO.43.002125
14.
14. O. V. Sakhno, L. M. Goldenberg, J. Stumpe, and T. N. Smirnova, Nanotechnology 18, 105704 (2007).
http://dx.doi.org/10.1088/0957-4484/18/10/105704
15.
15. C. G. Shull, Phys. Rev. Lett. 21, 1585 (1968).
http://dx.doi.org/10.1103/PhysRevLett.21.1585
16.
16. D. Sippel, K. Kleinstück, and G. E. R. Schulze, Phys. Lett. 14, 174 (1965).
http://dx.doi.org/10.1016/0031-9163(65)90570-6
17.
17. V. A. Somenkov, S. Sh. Shilstein, N. E. Belova, and K. Utemisov, Solid State Commun. 25, 593 (1978).
http://dx.doi.org/10.1016/0038-1098(78)91497-7
18.
18. M. Fally, J. Klepp, Y. Tomita, T. Nakamura, C. Pruner, M. A. Ellabban, R. A. Rupp, M. Bichler, I. Drevenšek-Olenik, J. Kohlbrecher, H. Eckerlebe, H. Lemmel, and H. Rauch, Phys. Rev. Lett. 105, 123904 (2010).
http://dx.doi.org/10.1103/PhysRevLett.105.123904
19.
19. J. Klepp, C. Pruner, Y. Tomita, C. Plonka-Spehr, P. Geltenbort, S. Ivanov, G. Manzin, K. H. Andersen, J. Kohlbrecher, M. A. Ellabban, and M. Fally, Phys. Rev. A 84, 013621 (2011).
http://dx.doi.org/10.1103/PhysRevA.84.013621
20.
20. Y. Tomita, N. Suzuki, and K. Chikama, Opt. Lett. 30, 839 (2005).
http://dx.doi.org/10.1364/OL.30.000839
21.
21. G. van der Zouw, M. Weber, J. Felber, R. Gähler, P. Geltenbort, and A. Zeilinger, Nucl. Instrum. Methods Phys. Res. A 440, 568 (2000).
http://dx.doi.org/10.1016/S0168-9002(99)01038-4
22.
22. P. Mikula, J. Kulda, L. Horalik, B. Chalupa, and P. Lukas, J. Appl. Cryst. 19, 324 (1986).
http://dx.doi.org/10.1107/S0021889886089288
23.
23. P. Høghøj, I. S. Anderson, T. Ebisawa, and T. Takeda, J. Phys. Soc. Jpn. 65, 296 (1996), http://wwwsoc.nii.ac.jp/jps/jpsj/1996sa/P296/p296h.html.
24.
24. M. Yamada, Y. Iwashita, T. Kanaya, M. Ichikawa, H. Tongu, S. Kennedy, H. Shimizu, K. Mishima, N. Yamada, K. Hirota, J. Carpenter, J. Lal, K. Andersen, P. Geltenbort, B. Guerard, G. Manzin, M. Hino, M. Kitaguchi, and M. Bleuel, Nucl. Instrum. Methods Phys. Res. A 634, S156 (2011).
http://dx.doi.org/10.1016/j.nima.2010.06.259
http://aip.metastore.ingenta.com/content/aip/journal/apl/100/21/10.1063/1.4720511
Loading
View: Figures

Figures

Image of FIG. 1.

Click to view

FIG. 1.

Sketch of the experimental setup.

Image of FIG. 2.

Click to view

FIG. 2.

(a) 2D-detector matrix at . (b) Reflectivity calculated from Eq. (3) (▾ order, ▴ order, • order). The grating is effectively a beam splitter.

Image of FIG. 3.

Click to view

FIG. 3.

(a) 2D-detector matrix for an off-Bragg position. (b) 2D-detector matrix for . (c) Reflectivity for the diffraction order as calculated from Eq. (3). The solid line is a theory curve according to Eq. (1), taking into account the width of the wavelength distribution and the beam divergence of about 1mrad. The peak value of R = 0.90(4) corresponds to the data shown in (b). The grating exhibits mirror-like reflectivity.

Loading

Article metrics loading...

/content/aip/journal/apl/100/21/10.1063/1.4720511
2012-05-23
2014-04-24

Abstract

We report on tests of holographically arranged grating-structures in nanoparticle-polymer composites in the form of 100 μm thin free-standing films, i.e., without sample containers or covers that could cause unwanted absorption/incoherent scattering of very-cold neutrons. Despite their large diameter of 2 cm, the flexible materials are of high optical quality and yield mirror-like reflectivity of about 90% for neutrons of 4.1 nm wavelength.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/100/21/1.4720511.html;jsessionid=ti5pejvt12j1.x-aip-live-06?itemId=/content/aip/journal/apl/100/21/10.1063/1.4720511&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Mirrors for slow neutrons from holographic nanoparticle-polymer free-standing film-gratings
http://aip.metastore.ingenta.com/content/aip/journal/apl/100/21/10.1063/1.4720511
10.1063/1.4720511
SEARCH_EXPAND_ITEM