1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Coupling between quantum Hall state and electromechanics in suspended graphene resonator
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/100/23/10.1063/1.3703763
1.
1. K. L. Ekinci and M. L. Roukes, Rev. Sci. Instrum. 76, 061101 (2005).
http://dx.doi.org/10.1063/1.1927327
2.
2. H. G. Craighead, Science 290, 1532 (2000).
http://dx.doi.org/10.1126/science.290.5496.1532
3.
3. A. K. Naik, M. S. Hanay, W. K. Hiebert, X. L. Feng, and M. L. Roukes, Nat Nano 4, 445 (2009).
http://dx.doi.org/10.1038/nnano.2009.152
4.
4. B. Lassagne, D. Garcia-Sanchez, A. Aguasca, and A. Bachtold, Nano Lett. 8, 3735 (2008).
http://dx.doi.org/10.1021/nl801982v
5.
5. K. Jensen, K. Kim, and A. Zettl, Nat Nano 3, 533 (2008).
http://dx.doi.org/10.1038/nnano.2008.200
6.
6. A. Cleland and M. Roukes, Nature 392, 160 (1998).
http://dx.doi.org/10.1038/32373
7.
7. C. A. Bolle, V. Aksyuk, F. Pardo, P. L. Gammel, E. Zeldov, E. Bucher, R. Boie, D. J. Bishop, and D. R. Nelson, Nature 399, 43 (1999).
http://dx.doi.org/10.1038/19924
8.
8. J. P. Davis, D. Vick, P. Li, S. K. N. Portillo, A. E. Fraser, J. A. J. Burgess, D. C. Fortin, W. K. Hiebert, and M. R. Freeman, J. Appl. Phys. 109, 07D309 (2011).
http://dx.doi.org/10.1063/1.3540643
9.
9. J. G. E. Harris, R. Knobel, K. D. Maranowski, A. C. Gossard, N. Samarth, and D. D. Awschalom, Phys. Rev. Lett. 86, 4644 (2001).
http://dx.doi.org/10.1103/PhysRevLett.86.4644
10.
10. A. C. Bleszynski-Jayich, W. E. Shanks, B. Peaudecerf, E. Ginossar, F. von Oppen, L. Glazman, and J. G. E. Harris, Science 326, 272 (2009).
http://dx.doi.org/10.1126/science.1178139
11.
11. H. Park, J. Park, A. K. L. Lim, E. H. Anderson, A. P. Alivisatos, and P. L. McEuen, Nature 407, 57 (2000).
http://dx.doi.org/10.1038/35024031
12.
12. G. A. Steele, A. K. Huttel, B. Witkamp, M. Poot, H. B. Meerwaldt, L. P. Kouwenhoven, and H. S. J. van der Zant, Science 325, 1103 (2009).
http://dx.doi.org/10.1126/science.1176076
13.
13. B. Lassagne, Y. Tarakanov, J. Kinaret, D. Garcia-Sanchez, and A. Bachtold, Science 325, 1107 (2009).
http://dx.doi.org/10.1126/science.1174290
14.
14. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, Nature 438, 197 (2005).
http://dx.doi.org/10.1038/nature04233
15.
15. Y. Zhang, Y. Tan, H. L. Stormer, and P. Kim, Nature 438, 201 (2005).
http://dx.doi.org/10.1038/nature04235
16.
16. J. S. Bunch, A. M. van der Zande, S. S. Verbridge, I. W. Frank, D. M. Tanenbaum, J. M. Parpia, H. G. Craighead, and P. L. McEuen, Science 315, 490 (2007).
http://dx.doi.org/10.1126/science.1136836
17.
17. C. Y. Chen, S. Rosenblatt, K. I. Bolotin, W. Kalb, P. Kim, I. Kymissis, H. L. Stormer, T. F. Heinz, and J. Hone, Nat. Nanotechnol. 4, 861 (2009).
http://dx.doi.org/10.1038/nnano.2009.267
18.
18. V. Singh, S. Sengupta, H. S. Solanki, R. Dhall, A. Allain, S. Dhara, P. Pant, and M. M. Deshmukh, Nanotechnology 21, 165204 (2010).
http://dx.doi.org/10.1088/0957-4484/21/16/165204
19.
19. A. M. van der Zande, R. A. Barton, J. S. Alden, C. S. Ruiz-Vargas, W. S. Whitney, P. H. Q. Pham, J. Park, J. M. Parpia, H. G. Craighead, and P. L. McEuen, Nano Lett. 10, 4869 (2010).
http://dx.doi.org/10.1021/nl102713c
20.
20. Y. Xu, C. Chen, V. V. Deshpande, F. A. DiRenno, A. Gondarenko, D. B. Heinz, S. Liu, P. Kim, and J. Hone, Appl. Phys. Lett. 97, 243111 (2010).
http://dx.doi.org/10.1063/1.3528341
21.
21. C. Kittel, Introduction to Solid-State Physics, 8th ed. (Wiley, 2005).
22.
22. K. I. Bolotin, K. J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, and H. L. Stormer, Solid State Commun. 146, 351 (2008).
http://dx.doi.org/10.1016/j.ssc.2008.02.024
23.
23. X. Du, I. Skachko, A. Barker, and E. Y. Andrei, Nat Nano 3, 491 (2008).
http://dx.doi.org/10.1038/nnano.2008.199
24.
24. J. Moser, A. Barreiro, and A. Bachtold, Appl. Phys. Lett. 91, 163513 (2007).
http://dx.doi.org/10.1063/1.2789673
25.
25.See supplemental material at http://dx.doi.org/10.1063/1.3703763 for tunability data, calculations of Fano-lineshape formula, additional data for graphene modes and calculation of magnetization of graphene in the presence of magnetic field. [Supplementary Material]
26.
26. V. Sazonova, Y. Yaish, H. Ustunel, D. Roundy, T. A. Arias, and P. L. McEuen, Nature 431, 284 (2004).
http://dx.doi.org/10.1038/nature02905
27.
27. V. Gouttenoire, T. Barois, S. Perisanu, J.-L. Leclercq, S. T. Purcell, P. Vincent, and A. Ayari, Small 6, 1060 (2010).
http://dx.doi.org/10.1002/smll.200901984
28.
28. D. Garcia-Sanchez, A. M. van der Zande, A. S. Paulo, B. Lassagne, P. L. McEuen, and A. Bachtold, Nano Lett. 8, 1399 (2008).
http://dx.doi.org/10.1021/nl080201h
29.
29. A. Eichler, J. Moser, J. Chaste, M. Zdrojek, I. Wilson-Rae, and A. Bachtold, Nat. Nano 6, 339 (2011).
http://dx.doi.org/10.1038/nnano.2011.71
30.
30. Z. Jiang, Y. Zhang, H. L. Stormer, and P. Kim, Phys. Rev. Lett. 99, 106802 (2007).
http://dx.doi.org/10.1103/PhysRevLett.99.106802
http://aip.metastore.ingenta.com/content/aip/journal/apl/100/23/10.1063/1.3703763
Loading
/content/aip/journal/apl/100/23/10.1063/1.3703763
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apl/100/23/10.1063/1.3703763
2012-06-04
2014-08-02

Abstract

Using grapheneresonator, we perform electromechanical measurements in quantum Hall regime to probe the coupling between a quantum Hall (QH) system and its mechanical motion. Mechanically perturbing the QH state through resonance modifies the DC resistance of the system and results in a Fano-lineshape due to electronic interference. Magnetization of the system modifies the resonator’s equilibrium position and effective stiffness leading to changes in resonant frequency. Our experiments show that there is an intimate coupling between the quantum Hall state and mechanics—electron transport is affected by physical motion and in turn the magnetization modifies the electromechanical response.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/100/23/1.3703763.html;jsessionid=7rvmtc2hl6gfg.x-aip-live-03?itemId=/content/aip/journal/apl/100/23/10.1063/1.3703763&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Coupling between quantum Hall state and electromechanics in suspended graphene resonator
http://aip.metastore.ingenta.com/content/aip/journal/apl/100/23/10.1063/1.3703763
10.1063/1.3703763
SEARCH_EXPAND_ITEM