1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Measuring protein concentration with entangled photons
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/100/23/10.1063/1.4724105
1.
1. V. Giovannetti, S. Lloyd, and L. Maccone, Science 306, 1330 (2004).
http://dx.doi.org/10.1126/science.1104149
2.
2. P. Walther, J. W. Pan, M. Aspelmeyer, R. Ursin, S. Gasparoni, and A. Zeilinger, Nature (London) 429, 158 (2004).
http://dx.doi.org/10.1038/nature02552
3.
3. M. W. Mitchell, J. S. Lundeen, and A. M. Steinberg, Nature (London) 429, 161 (2004).
http://dx.doi.org/10.1038/nature02493
4.
4. T. Nagata, R. Okamoto, J. L. O’Brien, K. Sasaki, and S. Takeuchi, Science 316, 726 (2007).
http://dx.doi.org/10.1126/science.1138007
5.
5. B. L. Higgins, D. W. Berry, S. D. Bartlett, H. M. Wiseman, and G. J. Pryde, Nature (London) 450, 393 (2007).
http://dx.doi.org/10.1038/nature06257
6.
6. J. F. C. Matthews, A. Politi, A. Stefanov, and J. L. O’Brien, Nat. Photonics 3, 346 (2009).
http://dx.doi.org/10.1038/nphoton.2009.93
7.
7. K. Goda, O. Miyakawa, E. E. Mikhailov, S. Saraf, R. Adhikari, K. McKenzie, R. Ward, S. Vass, A. J. Weinstein, and N. Mavalvala, Nat. Phys. 4, 472 (2008).
http://dx.doi.org/10.1038/nphys920
8.
8. C. Monat, P. Domachuk, and B. J. Eggleton, Nat. Photonics 1, 106 (2007).
http://dx.doi.org/10.1038/nphoton.2006.96
9.
9. R. R. Gattass and E. Mazur, Nat. Photonics 2, 219 (2008).
http://dx.doi.org/10.1038/nphoton.2008.47
10.
10. R. Osellame, V. Maselli, R. M. Vazquez, R. Ramponi, and G. Cerullo, Appl. Phys. Lett. 90, 231118 (2009).
http://dx.doi.org/10.1063/1.2747194
11.
11. A. Politi, M. J. Cryan, J. G. Rarity, S. Yu, and J. L. O’Brien, Science 320, 646 (2008).
http://dx.doi.org/10.1126/science.1155441
12.
12. A. Laing, A. Peruzzo, A. Politi, M. R. Verde, M. Halder, T. C. Ralph, M. G. Thompson, and J. L. O’Brien, Appl. Phys. Lett. 97, 211109 (2010).
http://dx.doi.org/10.1063/1.3497087
13.
13. G. M. Whitesides, Nature (London) 442, 368 (2006).
http://dx.doi.org/10.1038/nature05058
14.
14. I. Afek, O. Ambar, and Y. Silbeberg, Science 328, 879 (2010).
http://dx.doi.org/10.1126/science.1188172
15.
15. J. F. C. Matthews, A. Politi, D. Bonneau, and J. L. O’Brien, Phys. Rev. Lett. 107, 163602 (2011).
http://dx.doi.org/10.1103/PhysRevLett.107.163602
16.
16. H. Cable and J. P. Dowling, Phys Rev Lett 99, 163604 (2007).
http://dx.doi.org/10.1103/PhysRevLett.99.163604
17.
17. J. G. Rarity, P. R. Tapster, E. Jakeman, T. Larchuk, R. A. Campos, M. C. Teich, and B. E. A. Saleh, Phys. Rev. Lett. 65, 1348 (1990).
http://dx.doi.org/10.1103/PhysRevLett.65.1348
18.
18. M. A. Rubin and S. Kaushik, Phys. Rev. A 75, 053805 (2007).
http://dx.doi.org/10.1103/PhysRevA.75.053805
19.
19. M. J. Holland and K. Burnett, Phys. Rev. Lett. 71, 1355 (2003).
http://dx.doi.org/10.1103/PhysRevLett.71.1355
20.
20. U. Dorner, R. Demkowicz-Dobrzanski, B. J. Smith, J. S. Lundeen, W. Wasilewski, K. Banaszek, and I. A. Walmsley, Phys. Rev. Lett. 102, 040403 (2009).
http://dx.doi.org/10.1103/PhysRevLett.102.040403
21.
21.See supplementary material at http://dx.doi.org/10.1063/1.4724105 for details on the device fabrication, single photon source, normalization procedure and optimal MZI configuration. [Supplementary Material]
22.
22. G. Della Valle, R. Osellame, and P. Laporta, J. Opt. A, Pure Appl. Opt. 11, 013001 (2009).
http://dx.doi.org/10.1088/1464-4258/11/1/013001
23.
23. A. Marcinkevičius, S. Juodkazis, M. Watanabe, M. Miwa, S. Matsuo, H. Misawa, and J. Nishii, Opt. Lett. 26, 277 (2001).
http://dx.doi.org/10.1364/OL.26.000277
24.
24. K. C. Vishnubhatla, N. Bellini, R. Ramponi, G. Cerullo, and R. Osellame, Opt. Express 17, 8685 (2009).
http://dx.doi.org/10.1364/OE.17.008685
25.
25. R. Osellame, S. Taccheo, M. Marangoni, R. Ramponi, P. Laporta, D. Polli, S. De Silvestri, and G. Cerullo, J. Opt. Soc. Am. B 20, 1559 (2003).
http://dx.doi.org/10.1364/JOSAB.20.001559
26.
26. C. K. Hong, Z. Y. Ou, and L. Mandel, Phys. Rev. Lett. 59, 2044 (1987).
http://dx.doi.org/10.1103/PhysRevLett.59.2044
27.
27. G. D. Marshall, A. Politi, J. C. F. Matthews, P. Dekker, M. Ams, M. J. Withford, and J. L. O’Brien, Opt. Express 17, 12546 (2009).
http://dx.doi.org/10.1364/OE.17.012546
28.
28. T. Peters, The Plasma Proteins (Academic, 1975).
29.
29. K. J. Resch, K. L. Pregnell, R. Prevedel, A. Gilchrist, G. J. Pryde, J. L. OBrien, and A. G. White, Phys. Rev. Lett. 98, 223601 (2007).
http://dx.doi.org/10.1103/PhysRevLett.98.223601
30.
30. R. Okamoto, H. F. Hofmann, T. Nagata, J. L. O’Brien, K. Sasaki, and S. Takeuchi, New. J. Phys. 10, 073033 (2008).
http://dx.doi.org/10.1088/1367-2630/10/7/073033
31.
31. A. Datta, L. Zhang, N. Thomas-Peter, U. Dorner, B. J. Smith, and I. A. Walmsley, Phys. Rev. A 83, 063836 (2011).
http://dx.doi.org/10.1103/PhysRevA.83.063836
32.
32. R. Barer and S. Tkaczyk, Nature (London) 173, 821 (1954).
http://dx.doi.org/10.1038/173821b0
33.
33. L. Sansoni, F. Sciarrino, G. Vallone, P. Mataloni, A. Crespi, R. Ramponi, and R. Osellame, Phys. Rev. Lett. 105, 200503 (2010).
http://dx.doi.org/10.1103/PhysRevLett.105.200503
http://aip.metastore.ingenta.com/content/aip/journal/apl/100/23/10.1063/1.4724105
Loading
View: Figures

Figures

Image of FIG. 1.

Click to view

FIG. 1.

Quantum metrology in an optofluidic device. (a) Schematic of the experimental setup: A pump laser at generates pairs of downconverted photons at in a BiBO crystal. IF: interference filter, cl: collection lenses, PMF: polarization maintaining fibers, and FA: fiber array. (b) Schematic of the MZI interfaced to the microchannel. The fluidic channel has rectangular cross-section 500 μm × 55 μm and extends from the top to the bottom surface of the glass substrate (∼1 mm thickness). The MZI consists of two 50:50 directional couplers and has two arms of equal geometrical length; one waveguide crosses perpendicular to the microchannel, while the other passes externally. (c) Top image of the optical-fluidic interface. (d) Picture of the device with several interferometers and microchannels on chip, together with the fiber arrays for coupling input and output light.

Image of FIG. 2.

Click to view

FIG. 2.

Quantum interference in the Mach-Zehnder interferometer when the microfluidic channel is filled with distilled water. The coincidences at the detectors A and B are plotted as a function of the relative delay between thetwo photons.

Image of FIG. 3.

Click to view

FIG. 3.

Quantum interference fringes. Normalized single photon counts (a) and two photon coincidences (b) for different concentrations of bovine serum albumin in a buffer solution (full circles). The solid line represents a fitting of the experimental points with a sinusoidal curve. Error bars on data points are the same size of the dots and computed assuming Poissonian statistics of the detection events; other errors, arising for example from evaporation, are not taken into account. A slight disagreement of the experimental points with the fitting function is attributed to thermal fluctuation and solvent evaporation during the measurement.

Image of FIG. 4.

Click to view

FIG. 4.

Refractive index change in the buffer solution as a function of BSA concentration. Experimental data (dots) are shown together with a linear fitting (solid curve).

Loading

Article metrics loading...

/content/aip/journal/apl/100/23/10.1063/1.4724105
2012-06-05
2014-04-17

Abstract

Optical interferometry is amongst the most sensitive techniques for precision measurement. By increasing the light intensity, a more precise measurement can usually be made. However, if the sample is light sensitive entangled states can achieve the same precision with less exposure. This concept has been demonstrated in measurements of known optical components. Here, we use two-photon entangled states to measure the concentration of a blood protein in an aqueous buffer solution. We use an opto-fluidic device that couples a waveguide interferometer with a microfluidic channel. These results point the way to practical applications of quantum metrology to light-sensitive samples.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/100/23/1.4724105.html;jsessionid=53e6s5hng1r03.x-aip-live-06?itemId=/content/aip/journal/apl/100/23/10.1063/1.4724105&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Measuring protein concentration with entangled photons
http://aip.metastore.ingenta.com/content/aip/journal/apl/100/23/10.1063/1.4724105
10.1063/1.4724105
SEARCH_EXPAND_ITEM