1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Phase separation of co-evaporated ZnPc:C60 blend film for highly efficient organic photovoltaics
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/100/23/10.1063/1.4726118
1.
1. C. W. Tang, Appl. Phys. Lett. 48, 183 (1986).
http://dx.doi.org/10.1063/1.96937
2.
2. S. Sista, Z. Hong, L. M. Chen, and Y. Yang, Energy Environ. Sci. 4, 1606 (2011).
http://dx.doi.org/10.1039/c0ee00754d
3.
3. G. Li, R. Zhu, and Y. Yang, Nat. Photonics 6, 153 (2012).
http://dx.doi.org/10.1038/nphoton.2012.11
4.
4. M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dulop, Prog. Photovoltaics 20, 12 (2012).
http://dx.doi.org/10.1002/pip.2163
5.
5. C. J. Brabec, M. Heeney, I. McCulloch, and J. Nelson, Chem. Soc. Rev. 40, 1185 (2011).
http://dx.doi.org/10.1039/c0cs00045k
6.
6. A. Facchetti, Chem. Mater. 23, 733 (2011).
http://dx.doi.org/10.1021/cm102419z
7.
7. B. Walker, C. Kim, and T. Q. Nguyen, Chem. Mater. 23, 470 (2011).
http://dx.doi.org/10.1021/cm102189g
8.
8. I. Osaka, M. Saito, H. Mori, T. Koganezawa, and K. Takimiya, Adv. Mater. 24, 425 (2012).
http://dx.doi.org/10.1002/adma.201103065
9.
9. Y. Sun, G. C. Welch, W. L. Leong, C. J. Takacs, G. C. Bazan, and A. J. Heeger, Nature Mater. 11, 44 (2012).
http://dx.doi.org/10.1038/nmat3160
10.
10. M. Riede, C. Uhrich, J. Widmer, R. Timmreck, D. Wynands, G. Schwartz, W. M. Gnehr, D. Hildebrandt, A. Weiss, J. Hwang, S. Sundarraj, P. Erk, M. Pfeiffer, and K. Leo, Adv. Funct. Mater. 21, 3019 (2011).
http://dx.doi.org/10.1002/adfm.201002760
11.
11. J. Meiss, T. Menke, K. Leo, C. Uhrich, W. M. Gnehr, S. Sonntag, M. Pfeiffer, and M. Riede, Appl. Phys. Lett. 99, 043301 (2011).
http://dx.doi.org/10.1063/1.3610551
12.
12. S. Pfuetzner, J. Meiss, A. Petrich, M. Riede, and K. Leo, Appl. Phys. Lett. 94, 253303 (2009).
http://dx.doi.org/10.1063/1.3154554
13.
13. T. Osasa, S. Yamamoto, and M. Matsumura, Adv. Funct. Mater. 17, 2937 (2007).
http://dx.doi.org/10.1002/adfm.200601172
14.
14. S. Pfuetzner, C. Mickel, J. Jankowski, M. Hein, J. Meiss, C. Schuenemann, C. Elschner, A. A. Levin, B. Rellinghaus, K. Leo, and M. Riede, Org. Electron. 12, 435 (2011).
http://dx.doi.org/10.1016/j.orgel.2010.12.007
15.
15. W. Zeng, K. S. Yong, Z. M. Kam, F. Zhu, and Y. Li, Appl. Phys. Lett. 97, 133304 (2010).
http://dx.doi.org/10.1063/1.3493177
16.
16. J. W. Kim, H. J. Kim, H. H. Lee, T. Kim, and J. J. Kim, Adv. Funct. Mater. 21, 2067 (2011).
http://dx.doi.org/10.1002/adfm.201002601
17.
17. R. Pandey and R. J. Holmes, Adv. Mater. 22, 5301 (2010).
http://dx.doi.org/10.1002/adma.201002454
18.
18. T. Kaji, M. Zhang, S. Nakao, K , Iketaki, K. Yokoyama, C. T. Tang, and M. Hiramoto, Adv. Mater. 23, 3320 (2011).
http://dx.doi.org/10.1002/adma.201101305
19.
19. C. H. Cheng, J. Wang, G. T. Du, S. H. Shi, Z. J. Du, Z. Q. Fan, J. M. Bian, and M. S. Wang, Appl. Phys. Lett. 97, 083305 (2010).
http://dx.doi.org/10.1063/1.3483159
20.
20. V. P. S. Perera and K. Tennakone, Sol. Energy Mater. Sol. Cells 79, 249 (2003).
http://dx.doi.org/10.1016/S0927-0248(03)00103-X
21.
21. A. R. Kumarasinghe, W. R. Flavell, A. G. Thomas, A. K. Mallick, D. Tsoutsou, C. Chatwin, S. Rayner, P. Kirkham, and S. Warren, J. Chem. Phys. 127, 114703 (2007).
http://dx.doi.org/10.1063/1.2772249
22.
22. M. Hirade and C. Adachi, Appl. Phys. Lett. 99, 153302 (2011).
http://dx.doi.org/10.1063/1.3650472
23.
23. L. F. Drummy, R. J. Davis, D. L. Moore, M. Durstock, R. A. Vaia, and J. W. P. Hsu, Chem. Mater. 23, 907 (2011).
http://dx.doi.org/10.1021/cm102463t
24.
24. A. Herzing, L. J. Richter, and I. M. Anderson, J. Phys. Chem. C 114, 17501 (2010).
http://dx.doi.org/10.1021/jp105883p
25.
25. W. Schindler, M. Wollgarten, and K. Fostiropoulos, Org. Electron. 13, 1100 (2012).
http://dx.doi.org/10.1016/j.orgel.2012.03.008
26.
26. J. Yang, F. Zhu, B. Yu, H. Wang, and D. Yan, Appl. Phys. Lett. 100, 103305 (2012).
http://dx.doi.org/10.1063/1.3692106
27.
27. F. Yang, M. Shtein, and S. R. Forrest, Nature Mater. 4, 37 (2005).
http://dx.doi.org/10.1038/nmat1285
28.
28. P. Peumans, A. Yakimov, and S. R. Forrest, J. Appl. Phys. 93, 3693 (2003).
http://dx.doi.org/10.1063/1.1534621
29.
29. L. A. A. Pettersson, L. S. Roman, and O. Inganas, J. Appl. Phys. 86, 487 (1999).
http://dx.doi.org/10.1063/1.370757
30.
30. W. Chen, D. C. Qi, H. Huang, X. Gao, and A. T. S. Wee, Adv. Funct. Mater. 21, 410 (2011).
http://dx.doi.org/10.1002/adfm.201000902
31.
31. W. Chen, C. Huang, X. Y. Gao, L. Wang, C. G. Zhen, D. C. Qi, S. Chen, H. L. Zhang, K. P. Loh, and Z. K. Chen, J. Phys. Chem. B 110, 26075 (2006).
http://dx.doi.org/10.1021/jp065821q
32.
32. W. Chen, H. Huang, S. Chen, L. Chen, H. L. Zhang, X. Y. Gao, and A. T. S. Wee, Appl. Phys. Lett. 91, 114102 (2007).
http://dx.doi.org/10.1063/1.2785948
33.
33. H. Huang, Y. Huang, J. Pflaum, A. T. S. Wee, and W. Chen, Appl. Phys. Lett. 95, 263309 (2009).
http://dx.doi.org/10.1063/1.3280858
34.
34. T. Sakurai, T. Ohashi, H. Kitazume, M. Kubota, T. Suemasu, and K. Akimoto, Org. Electron. 12, 966 (2011).
http://dx.doi.org/10.1016/j.orgel.2011.03.016
35.
journal-id:
http://aip.metastore.ingenta.com/content/aip/journal/apl/100/23/10.1063/1.4726118
Loading
/content/aip/journal/apl/100/23/10.1063/1.4726118
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apl/100/23/10.1063/1.4726118
2012-06-05
2014-10-01

Abstract

We demonstrate phase separation of co-evaporated zinc phthalocyanine (ZnPc) and fullerene (C60) for efficient organic photovoltaic cells. With introducing a poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) film and a crystalline copper iodide film on indium tin oxide, 20-nm-thick ZnPc film adopts a lying-down crystalline geometry with grain sizes of about 50 nm. This surface distributed with strong interaction areas and weak interaction areas enables the selective growth of ZnPc and C60 molecules during following co-evaporation, which not only results in a phase separation but also improve the crystalline growth of C60. This blend film greatly enhances the efficiencies in photocurrent generation and carrier transport, resulting in a high power conversion efficiency of 4.56% under 1 sun.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/100/23/1.4726118.html;jsessionid=4r3p2q5r8d41t.x-aip-live-06?itemId=/content/aip/journal/apl/100/23/10.1063/1.4726118&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Phase separation of co-evaporated ZnPc:C60 blend film for highly efficient organic photovoltaics
http://aip.metastore.ingenta.com/content/aip/journal/apl/100/23/10.1063/1.4726118
10.1063/1.4726118
SEARCH_EXPAND_ITEM