1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Semiconductor nanowires for highly sensitive, room-temperature detection of terahertz quantum cascade laser emission
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/100/24/10.1063/1.4724309
1.
1. M. Tonouchi, Nat. Photonics 1, 97 (2007).
http://dx.doi.org/10.1038/nphoton.2007.3
2.
2. H. W. Hubers, S. G. Pavlov, H. Richter, A. D. Semenov, L. Mahler, A. Tredicucci, H. E. Beere, D. A. Ritchie, Appl. Phys. Lett. 86, 244104 (2005).
http://dx.doi.org/10.1063/1.1949724
3.
3. P. Shumyatsky and R. R. Alfano, J. Biomed. Opt. 16, 033001 (2011).
http://dx.doi.org/10.1117/1.3554742
4.
4. R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, Nature 417, 156 (2002).
http://dx.doi.org/10.1038/417156a
5.
5. B. S. Williams, Nat. Photonics 1, 517 (2007).
http://dx.doi.org/10.1038/nphoton.2007.166
6.
6. M. S. Vitiello, G. Scamarcio, J. Faist, G. Scalari, C. Walther, H. E. Beere, and D. A. Ritchie, Appl. Phys. Lett. 94, 021115 (2009).
http://dx.doi.org/10.1063/1.3054644
7.
7. L. Mahler and A. Tredicucci, Laser Photonics Rev. 5, 647 (2011).
http://dx.doi.org/10.1002/lpor.201000042
8.
8. G. Scalari, C. Walther, M. Fischer, R. Terazzi, H. E. Beere, D. Ritchie, and J. Faist, Laser Photonics Rev. 3, 45 (2009).
http://dx.doi.org/10.1002/lpor.200810030
9.
9. M. S. Vitiello and A. Tredicucci, IEEE Trans. terahertz Sci. Technol. 1, 76 (2011).
http://dx.doi.org/10.1109/TTHZ.2011.2159543
10.
10. M. S. Vitiello, L. Consolino, S. Bartalini, A. Taschin, A. Tredicucci, M. Inguscio, and P. D. Natale, “Quantum-limited frequency fluctuations in a Terahertz laser,” Nature Photonics (in press).
11.
11. S. Cibella, M. Ortolani, R. Leoni, G. Torrioli, L. Mahler, J. H. Xu, A. Tredicucci, H. E. Beere, and D. A. Ritchie, Appl. Phys. Lett. 95, 213501 (2009).
http://dx.doi.org/10.1063/1.3265958
12.
12. B. N. Behnken, G. Karunasiri, D. R. Chamberlin, P. R. Robrish, and J. Faist, Opt. Lett. 33, 440 (2008).
http://dx.doi.org/10.1364/OL.33.000440
13.
13. A. W. M. Lee, Q. Qin, S. Kumar, B. S. Williams, Q. Hu, Appl. Phys. Lett. 89, 141125 (2006).
http://dx.doi.org/10.1063/1.2360210
14.
14. A. M. Hashim, S. Kasai, and H. Hasegawa, Superlattice Microstruct. 44, 754 (2008).
http://dx.doi.org/10.1016/j.spmi.2008.08.003
15.
15. W. Knap, F. Teppe, Y. Meziani, N. Dyakonova, J. Lusakowski, F. Boeuf, T. Skotnicki, D. Maude, S. Rumyantsev, and M. S. Shur, Appl. Phys. Lett. 85, 675 (2002).
http://dx.doi.org/10.1063/1.1775034
16.
16. Y. M. Meziani, J. Lusakowski, N. Dyakonova, W. Knap, D. Seliuta, E. Sirmulis, J. Deverson, G. Valusis, F. Boeuf, and T. Skotnicki, IEICE Trans. Electron. E89-C, 993 (2006).
http://dx.doi.org/10.1093/ietele/e89-c.7.993
17.
17. F. Schuster, D. Coquillat, H. Videlier, M. Sakowicz, F. Teppe, L. Dussopt, B. Giffard, T. Skotnicki, and W. Knap, Opt. Express 19, 7827 (2011).
http://dx.doi.org/10.1364/OE.19.007827
18.
18. S. Boppel, A. Lisauskas, V. Krozer, H. G. Roskos, Electron. Lett. 47, 661 (2011).
http://dx.doi.org/10.1049/el.2011.0687
19.
19. M. S. Vitiello, D. Coquillat, L. Viti, D. Ercolani, F. Teppe, A. Pitanti, F. Beltram, L. Sorba, W. Knap, and A. Tredicucci, Nano Lett. 12, 96 (2012).
http://dx.doi.org/10.1021/nl2030486
20.
20. L. Viti, M. S. Vitiello, D. Ercolani, L. Sorba, and A. Tredicucci, Nanoscale Res. Lett. 7, 159 (2012).
http://dx.doi.org/10.1186/1556-276X-7-159
21.
21. D. Ercolani, F. Rossi, A. Li, S. Roddaro, V. Grillo, G. Salviati, F. Beltram, and L. Sorba, Nanotechnology 20, 505605 (2009).
http://dx.doi.org/10.1088/0957-4484/20/50/505605
22.
22. C. Walther, M. Fischer, G. Scalari, R. Terazzi, N. Hoyler, and J. Faist, Appl. Phys. Lett. 91, 131122 (2007).
http://dx.doi.org/10.1063/1.2793177
23.
23. C. A. Balanis, Antenna Theory (Wiley, Hoboken, New Jersey, 2005).
24.
24. F. Sizov and A. Rogalski, Prog. Quantum Electron. 34, 278 (2010).
http://dx.doi.org/10.1016/j.pquantelec.2010.06.002
http://aip.metastore.ingenta.com/content/aip/journal/apl/100/24/10.1063/1.4724309
Loading
View: Figures

Figures

Image of FIG. 1.

Click to view

FIG. 1.

(a) Scanning electron microscope (SEM) image of the detector showing the bow tie antenna patterned between the source (S) and gate (G) contacts. Each bow-tie arm was 100 μm long and featured an aperture angle of 105°. (b) SEM image of a lateral gate nanowire device. The source, drain (D) and gate contacts are marked on the picture. The source and drain pads are linked through thin connection stripes, having an almost 90° orientation angle, to one antenna lobe or to the drain main contact area, respectively. (c) Responsivity of the NW FET to the radiation of a 1.5 THz QCL, modulated at 333 Hz, as a function of the gate voltage measured at T = 300 K, and at zero applied Vds while the polarization of the incoming beam is at an angle θ with respect to the bow-tie antenna axis. The left vertical axis shows the current-voltage (Ids-Vg ) transfer characteristic measured at room temperature and at a drain to source voltage Vds  = 0.005 V.

Image of FIG. 2.

Click to view

FIG. 2.

Noise equivalent power as a function of the gate voltage. The dashed line shows the minimum recorded NEP value.

Image of FIG. 3.

Click to view

FIG. 3.

(a) Detector responsivity plotted as a function of the QCL modulation frequency. The dashed line is a guide to the eye. (b) Photoresponse signal Δu recorded while varying the bias/current of the QCL modulated at 333 Hz, plotted as a function of the corresponding pyroelectric response. The dashed line is a linear fit to the data.

Loading

Article metrics loading...

/content/aip/journal/apl/100/24/10.1063/1.4724309
2012-06-11
2014-04-25

Abstract

We report on the development of nanowire-based field-effect transistors operating as high sensitivity terahertz (THz) detectors. By feeding the 1.5 THz radiation field of a quantum cascade laser(QCL) at the gate-source electrodes with a wide band dipole antenna, we record a photovoltage signal corresponding to responsivity values >10 V/W, with impressive noise equivalent power levels <6 × 10−11 W/√Hz at room temperature and a wide modulation bandwidth. The potential scalability to even higher frequencies and the technological feasibility of realizing multi-pixel arrays coupled with QCLsources make the proposed technology highly competitive for a future generation of THz detection systems.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/100/24/1.4724309.html;jsessionid=6nt2ug5mth2h7.x-aip-live-03?itemId=/content/aip/journal/apl/100/24/10.1063/1.4724309&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Semiconductor nanowires for highly sensitive, room-temperature detection of terahertz quantum cascade laser emission
http://aip.metastore.ingenta.com/content/aip/journal/apl/100/24/10.1063/1.4724309
10.1063/1.4724309
SEARCH_EXPAND_ITEM