1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Energy band bending induced charge accumulation at fullerene/bathocuproine heterojunction interface
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/100/24/10.1063/1.4728996
1.
1. P. Peumans, A. Yakimov, and S. R. Forrest, J. Appl. Phys. 93, 3693 (2003).
http://dx.doi.org/10.1063/1.1534621
2.
2. M. D. Wang, F. Y. Xie, W. Q. Xie, S. Z. Zheng, N. Ke, J. Chen, N. Zhao, and J. B. Xu, Appl. Phys. Lett. 98, 183304 (2011).
http://dx.doi.org/10.1063/1.3580629
3.
3. N. N. Wang, J. S. Yu, Y. Zang, J. Huang, and Y. D. Jiang, Sol. Energy Mater. Sol. Cells 94, 263 (2010).
http://dx.doi.org/10.1016/j.solmat.2009.09.012
4.
4. P. Peumans, V. Bulovic, and S. R. Forrest, Appl. Phys. Lett. 76, 2650 (2000).
http://dx.doi.org/10.1063/1.126433
5.
5. M. Vogel, S. Doka, Ch. Breyer, M. Ch. Lux-Steiner, and K. Fostiropoulos, Appl. Phys. Lett. 89, 163501 (2006).
http://dx.doi.org/10.1063/1.2362624
6.
6. Q. L. Song, C. M. Li, M. L. Wang, X. Y. Sun, and X. Y. Hou, Appl. Phys. Lett. 90, 071109 (2007).
http://dx.doi.org/10.1063/1.2695733
7.
7. C. C. Chang, C. F. Lin, J. M. Chiou, T. H. Ho, Y. Tai, J. H. Lee, Y. F. Chen, J. K. Wang, L. C. Chen, and K. H. Chen, Appl. Phys. Lett. 96, 263506 (2010).
http://dx.doi.org/10.1063/1.3456530
8.
8. B. P. Rand, J. Li, J. Xue, R. J. Holmes, M. E. Thompson, and S. R. Forrest, Adv. Mater. 17, 2714 (2005).
http://dx.doi.org/10.1002/adma.200500816
9.
9. Y. Terao, H. Sasabe, and C. Adachi, Appl. Phys. Lett. 90, 103515 (2007).
http://dx.doi.org/10.1063/1.2711525
10.
10. M. A. Khan, W. Xu, Khizar-ul-Haq, X. W. Zhang, Y. Bai, X. Y. Jiang, Z. L. Zhang, and W. Q. Zhu, J. Phys. D: Appl. Phys. 41, 225105 (2008).
http://dx.doi.org/10.1088/0022-3727/41/22/225105
11.
11. J. C. Wang, X. C. Rena, S. Q. Shi, C. W. Leung, and P. K. L. Chan, Org. Electron. 12, 880 (2011).
http://dx.doi.org/10.1016/j.orgel.2011.02.016
12.
12. M. Glatthaar, M. K. Riede, N. Keegan, K. Sylvester-Hvid, B. Zimmermann, M. Niggemann, A. Hinsch, and A. Gombert, Sol. Energy Mater. Sol. Cells 91, 390 (2007).
http://dx.doi.org/10.1016/j.solmat.2006.10.020
13.
13. A. Wagenpfahl, D. Rauh, M. Binder, C. Deibel, and V. Dyakonov, Phys. Rev. B 82, 115306 (2010).
http://dx.doi.org/10.1103/PhysRevB.82.115306
14.
14. A. Kumar, S. Sista, and Y. Yang, J. Appl. Phys. 105, 094512 (2009).
http://dx.doi.org/10.1063/1.3117513
15.
15. C. Uhrich, D. Wynands, S. Olthof, M. K. Riede, K. Leo, S. Sonntag, B. Maennig, and M. Pfeiffer, J. Appl. Phys. 104, 043107 (2008).
http://dx.doi.org/10.1063/1.2973199
16.
16. J. Hwang, A. Wan, and A. Kahn, Mat. Sci. Eng. R 64, 23 (2009).
http://dx.doi.org/10.1016/j.mser.2008.12.001
17.
17. T. Sakurai, S. Toyoshima, H. Kitazume, S. Masuda, H. Kato, and K. Akimoto, J. Appl. Phys. 107, 043707 (2010).
http://dx.doi.org/10.1063/1.3309278
18.
18. T. W. Ng, M. F. Lo, S. T. Lee, and C. S. Lee, Appl. Phys. Lett. 100, 113301 (2012).
http://dx.doi.org/10.1063/1.3693608
19.
19. S. Toyoshima, K. Kuwabara, T. Sakurai, T. Taima, K. Saito, H. Kato, and K. Akimoto, Jpn. J. Appl. Phys. 46, 2692 (2007).
http://dx.doi.org/10.1143/JJAP.46.2692
20.
20. Y. Wang, J. M. Holden, A. M. Rao, W. Lee, X. X. Bi, S. L. Ren, G. W. Lehman, G. T. Hager, and P. C. Eklund, Phys. Rev. B 45, 14396 (1992).
http://dx.doi.org/10.1103/PhysRevB.45.14396
21.
21. H. Vázquez, R. Oszwaldowski, P. Pou, J. Ortega, R. Perez, F. Flores, and A. Kahn, Europhys. Lett. 65, 802 (2004).
http://dx.doi.org/10.1209/epl/i2003-10131-2
22.
22. A. Kahn, W. Zhao, W. Y. Gao, H. Vazquez, and F. Flores, Chem. Phys. 325, 129 (2006).
http://dx.doi.org/10.1016/j.chemphys.2005.09.015
23.
23. W. Zhao and A. Kahn, J. Appl. Phys. 105, 123711 (2009).
http://dx.doi.org/10.1063/1.3153962
24.
24. J. X. Tang, Y. C. Zhou, Z. T. Liu, C. S. Lee, and S. T. Lee, Appl. Phys. Lett. 93, 043512 (2008).
http://dx.doi.org/10.1063/1.2966155
25.
journal-id:
http://aip.metastore.ingenta.com/content/aip/journal/apl/100/24/10.1063/1.4728996
Loading
/content/aip/journal/apl/100/24/10.1063/1.4728996
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apl/100/24/10.1063/1.4728996
2012-06-12
2014-08-21

Abstract

The electronic properties of fullerene (C60)/bathocuproine (BCP)/Ag heterostructures were studied as a function of the BCP layer thickness by photoemission spectroscopy. For the thin BCP layer, the energy levels are flat and gap states exist at the interface. In contrast, energy band bending occurs at the C60/BCP interface when the BCP layer is thick, resulting in a considerable barrier for electron transport and therefore causing charge accumulation in organic solar cells. The results reveal that a thin BCP layer gives a much more favorable energy level structure and conform that charge accumulation is responsible to the anomalous current-voltage (I-V) curve.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/100/24/1.4728996.html;jsessionid=69ehl9tn8hj76.x-aip-live-03?itemId=/content/aip/journal/apl/100/24/10.1063/1.4728996&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Energy band bending induced charge accumulation at fullerene/bathocuproine heterojunction interface
http://aip.metastore.ingenta.com/content/aip/journal/apl/100/24/10.1063/1.4728996
10.1063/1.4728996
SEARCH_EXPAND_ITEM