1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Coupled plasmonic modes in organic planar microcavities
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/100/25/10.1063/1.4729820
1.
1. S. A. Maier, Plasmonics—Fundamentals and Applications, 1st ed. (Springer, New York, 2007).
2.
2. E. N. Economou, Phys. Rev. 182, 539 (1969).
http://dx.doi.org/10.1103/PhysRev.182.539
3.
3. W. L. Barnes, A. Dereux, and T. W. Ebbesen, Nature (London) 424, 824 (2003).
http://dx.doi.org/10.1038/nature01937
4.
4. W. A. Murray and W. L. Barnes, Adv. Mater. 19, 3771 (2007).
http://dx.doi.org/10.1002/adma.200700678
5.
5. V. Giannini, A. I. Fernández-Domínguez, S. C. Heck, and S. A. Maier, Chem. Rev. 111, 3888 (2011).
http://dx.doi.org/10.1021/cr1002672
6.
6. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, Nature (London) 391, 667 (1998).
http://dx.doi.org/10.1038/35570
7.
7. P. Berini, Phys. Rev. B 611, 10484 (2000).
http://dx.doi.org/10.1103/PhysRevB.61.10484
8.
8. J. Dionne, L. Sweatlock, H. Atwater, and A. Polman, Phys. Rev. B 73, 035407 (2006).
http://dx.doi.org/10.1103/PhysRevB.73.035407
9.
9. H. J. Lezec, J. A. Dionne, and H. A. Atwater, Science 316, 430 (2007).
http://dx.doi.org/10.1126/science.1139266
10.
10. F. Yang, J. R. Sambles, and G. W. Bradberry, Phys. Rev. B 44, 5855 (1991).
http://dx.doi.org/10.1103/PhysRevB.44.5855
11.
11. M. A. Gilmore and B. L. Johnson, J. Appl. Phys. 93, 4497 (2003).
http://dx.doi.org/10.1063/1.1558226
12.
12. J. Chen, G. A. Smolyakov, S. R. J. Brueck, and K. J. Malloy, Opt. Express 16, 14902 (2008).
http://dx.doi.org/10.1364/OE.16.014902
13.
13. D. Woolf, M. Loncar, and F. Capasso, Opt. Express 171, 19996 (2009).
http://dx.doi.org/10.1364/OE.17.019996
14.
14. R. Meerheim, M. Furno, S. Hofmann, B. Lüssem, and K. Leo, Appl. Phys. Lett. 97, 253305 (2010).
http://dx.doi.org/10.1063/1.3527936
15.
15. S. Hofmann, M. Thomschke, P. Freitag, M. Furno, B. Lussem, and K. Leo, Appl. Phys. Lett. 97, 253308 (2010).
http://dx.doi.org/10.1063/1.3530447
16.
16. L. H. Smith, M. Taylor, I. Hooper, and W. L. Barnes, J. Mod. Opt. 55, 2929 (2008).
http://dx.doi.org/10.1080/09500340802271250
17.
17. M. Furno, R. Meerheim, M. Thomschke, S. Hofmann, B. Lüssem, and K. Leo, Proc. SPIE 7617, 761716 (2010).
http://dx.doi.org/10.1117/12.840043
18.
18. M. Furno, R. Meerheim, S. Hofmann, B. Lüssem, and K. Leo, Phys. Rev. B 85, 115205 (2012).
http://dx.doi.org/10.1103/PhysRevB.85.115205
19.
19. CRC Handbook of Chemistry and Physics, 73rd ed., edited by D. R. Lide (CRC, Boca Raton, 1992).
20.
20.We define the overall symmetry of the plasmonic modes with respect to the center of the optical structure. With reference to thin metallic layers, a monotonic field profile within the slab is defined as antisymmetric. On the other hand, a profile exhibiting a maximum or minimum of the field within the metal slab is defined as symmetric.
21.
journal-id:
http://aip.metastore.ingenta.com/content/aip/journal/apl/100/25/10.1063/1.4729820
Loading

Figures

Image of FIG. 1.

Click to view

FIG. 1.

Schematics of the two structures under study. (a) Symmetric IMIMI cavity. (b) T-OLED with CL.

Image of FIG. 2.

Click to view

FIG. 2.

Simulation results for the symmetric organic microcavity. (a) Energy dispersion diagram for the TM-polarization. False color encodes fractional power dissipated into different modes with the lightest tones corresponding to strong coupling. The dashed line denotes the air light line. Dipoles are assumed to have isotropic orientation. (b) Tangential field profiles of the plasmonic modes. The a, o, and m abbreviations indicate layers composed of air, organic, and metal, respectively. Results are shown at E = 2.07 eV for the SA and AA modes, and at E = 1.55 eV for the SS and AS modes.

Image of FIG. 3.

Click to view

FIG. 3.

Calculation results for the T-OLED stack. (a) Energy dispersion diagram. Results are shown for unpolarized light and isotropic dipole radiators. The dashed line denotes the air light line. (b) Power dissipation spectrum at E = 2.6 eV (λ = 477 nm).

Image of FIG. 4.

Click to view

FIG. 4.

Tangential field profiles of the T-OLED resonant modes, TM-polarization. (a) SPP1 mode, E = 2.26 eV (λ = 550 nm), . (b) SPP2 mode, E = 1.77 eV (λ = 700 nm), . (c) SPP3 mode, E = 1.77 eV (λ = 700 nm), .

Tables

Generic image for table

Click to view

Table I.

Wavelength-averaged coupling efficiencies to the cavity modes for the three dipole orientations. All values are given in percent of the respective total radiated power. Out: outcoupling efficiency. Wg: waveguide mode. SPP1, SPP2, and SPP3: plasmonic coupling. Abs: absorption losses.

Loading

Article metrics loading...

/content/aip/journal/apl/100/25/10.1063/1.4729820
2012-06-20
2014-04-18

Abstract

We report on the nature of the resonant modes in organic planar microcavities featuring semi-transparent metallic layers. We theoretically demonstrate that symmetric microcavities support a total of four modes originating from the coupling of surface plasmon polaritons. For red top-emitting organic light-emitting diodes with one semi-transparent metallic electrode, we identify three coupled plasmonic modes and calculate a light outcoupling efficiency close to 34% when assuming emitters with isotropic transition dipole moment. This value is estimated to increase to 50% in the case the dipole moment is purely horizontal.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/100/25/1.4729820.html;jsessionid=7cujkthbb3caf.x-aip-live-06?itemId=/content/aip/journal/apl/100/25/10.1063/1.4729820&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Coupled plasmonic modes in organic planar microcavities
http://aip.metastore.ingenta.com/content/aip/journal/apl/100/25/10.1063/1.4729820
10.1063/1.4729820
SEARCH_EXPAND_ITEM