1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
f
Carrier transport mechanism of poly(3,4-ethylenedioxythiophene) doped with poly(4-styrenesulfonate) films by incorporating ZnO nanoparticles
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/100/25/10.1063/1.4730391
1.
1. V. Coropceanu, J. Cornil, D. A. da Silva Fiho, Y. Olivier, R. Silbey, and J. Brédas, Chem. Rev. 107, 926 (2007).
http://dx.doi.org/10.1021/cr050140x
2.
2. Y. J. Lin and Y. C. Su, J. Appl. Phys. 111, 073712 (2012).
http://dx.doi.org/10.1063/1.3702446
3.
3. Y. M. Chin, J. C. Lin, Y. J. Lin, and K. C. Wu, Sol. Energy Mater. Sol. Cells 94, 2154 (2010).
http://dx.doi.org/10.1016/j.solmat.2010.07.002
4.
4. J. Maeng, M. Jo, S. J. Kang, M. K. Kwon, G. Jo, T. W. Kim, J. Seo, H. Hwang, D. Y. Kim, S. J. Park, and T. Lee, Appl. Phys. Lett. 93, 123109 (2008).
http://dx.doi.org/10.1063/1.2990225
5.
5. L. W. Ji, W. S. Shih, T. H. Fang, C. Z. Wu, S. M. Peng, and T. H. Meen, J. Mater. Sci. 45, 3266 (2010).
http://dx.doi.org/10.1007/s10853-010-4336-4
6.
6. B. Riedel, Y. Shen, J. Hauss, M. Aichholz, X. Tang, U. Lemmer, and M. Gerken, Adv. Mater. 23, 740 (2011).
http://dx.doi.org/10.1002/adma.201003490
7.
7. Y. J. Lin, T. H. Su, J. C. Lin, and Y. C. Su, Synth. Met. 162, 406 (2012).
http://dx.doi.org/10.1016/j.synthmet.2011.12.029
8.
8. J. H. Lin, J. J. Zeng, Y. C. Su, and Y. J. Lin, Appl. Phys. Lett. 100, 153509 (2012).
http://dx.doi.org/10.1063/1.3703612
9.
9. Y. J. Lin, F. M. Yan, C. Y. Huang, W. Y. Chou, J. Chang, and Y. C. Lien, Appl. Phys. Lett. 91, 092127 (2007).
http://dx.doi.org/10.1063/1.2777147
10.
10. A. Moujoud, S. H. Oh, K. Y. Heo, K. W. Lee, and H. J. Kim, Org. Electron. 10, 785 (2009).
http://dx.doi.org/10.1016/j.orgel.2009.03.014
11.
11. J. Ouyang, Q. Xu, C. W. Chu, Y. Yang, G. Li, and J. Shinar, Polymer 45, 8443 (2004).
http://dx.doi.org/10.1016/j.polymer.2004.10.001
12.
12. T. Zhang, Z. Xu, D. L. Tao, F. Teng, F. S. Li, M. J. Zheng, and X. R. Xu, Nanotechnology 16, 2861 (2005).
http://dx.doi.org/10.1088/0957-4484/16/12/021
13.
13. C. C. Oey, A. B. Djurišić, C. Y. Kwong, C. H. Cheung, W. K. Chan, J. M. Nunzi, and P. C. Chui, Thin Solid Films 492, 253 (2005).
http://dx.doi.org/10.1016/j.tsf.2005.07.118
14.
14. N. G. Semaltianos, S. Logothetidis, N. Hastas, W. Perrie, S. Romani, R. J. Potter, G. Dearden, K. G. Watkins, P. French, and M. Sharp, Chem. Phys. Lett. 484, 283 (2010).
http://dx.doi.org/10.1016/j.cplett.2009.11.054
15.
15. C. Ton-That, M. R. Phillips, and T. P. Ngyyen, J. Lumin. 128, 2031 (2008).
http://dx.doi.org/10.1016/j.jlumin.2008.07.004
16.
16. G. D. Sharma, P. Suresh, P. Balaraju, S. K. Sharma, and M. S. Roy, Synth. Met. 158, 400 (2008).
http://dx.doi.org/10.1016/j.synthmet.2008.03.009
17.
17. D. M. Taylor, D. Morris, and J. A. Cambridge, Appl. Phys. Lett. 85, 5266 (2004).
http://dx.doi.org/10.1063/1.1829389
18.
18. M. M. de Kok, M. Buechel, S. I. E. Vulto, P. van de Weijer, E. A. Meulenkamp, S. H. P. M. de Winter, A. J. G. Mank, H. J. M. Vorstenbosch, C. H. L. Weijtens, and V. van Elsbergen, Phys. Status Solidi A 201, 1342 (2004).
http://dx.doi.org/10.1002/pssa.200404338
19.
19. A. M. Nardes, M. Kemerink, and R. A. Janssen, Phys. Rev. B 76, 085208 (2007).
http://dx.doi.org/10.1103/PhysRevB.76.085208
20.
20. O. D. Jurchescu, J. Baas, and T. T. M. Palstra, Appl. Phys. Lett. 84, 3061 (2004).
http://dx.doi.org/10.1063/1.1704874
http://aip.metastore.ingenta.com/content/aip/journal/apl/100/25/10.1063/1.4730391
Loading
/content/aip/journal/apl/100/25/10.1063/1.4730391
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apl/100/25/10.1063/1.4730391
2012-06-20
2014-10-23

Abstract

The carrier transport mechanism of poly(3,4-ethylenedioxythiophene) doped with poly(4-styrenesulfonate) (PEDOT:PSS) having ZnOnanoparticles, denoted ZnO-doped PEDOT:PSS, is investigated. Conductivity proportional to ZnOdoping was observed at 300 K. The improved electrical conductivity is considered to mainly come from the mobility enhancement. The carrier mobility in ZnO-doped PEDOT:PSS samples exhibits unexpectedly strong temperature dependence, implying the domination of tunneling in the whole range of temperatures. An exhibition of high mobility of ZnO-doped PEDOT:PSS samples is attributed to a combined effect of the weak electron-phonon couplings and changes in the chemical structure of PEDOT:PSS.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/100/25/1.4730391.html;jsessionid=1plcqnxljjctr.x-aip-live-03?itemId=/content/aip/journal/apl/100/25/10.1063/1.4730391&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Carrier transport mechanism of poly(3,4-ethylenedioxythiophene) doped with poly(4-styrenesulfonate) films by incorporating ZnO nanoparticles
http://aip.metastore.ingenta.com/content/aip/journal/apl/100/25/10.1063/1.4730391
10.1063/1.4730391
SEARCH_EXPAND_ITEM